Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тела Энергия потенциальная —

Как уже отмечалось, вследствие упругой деформации в теле накапливается потенциальная энергия деформации. Удельная потенциальная энергия в случае осевого растяжения или сжатия определяется по формуле (9.6). Для объемного напряженного состояния эта энергия  [c.152]

Внешние силы, деформирующие упругое тело, совершают работу. При статическом нагружении работа внешних сил целиком обращается во внутреннюю энергию тела, называемую потенциальной энергией деформации.  [c.181]


При деформации тела внешние силы производят работу А. Если внешние силы статически снять, то эта работа, затраченная на деформацию тела, будет возвращена на восстановление его размеров и формы. Следовательно, работу А, затраченную на деформацию тела, можно рассматривать как накопленную телом энергию, называемую потенциальной энергией деформации W=A. Энергия деформации, отнесенная к объему тела, носит название удельной. Обозначим ее буквой Wq. Энергию деформации всего тела найдем путем интегрирования по занимаемому им объему  [c.114]

Точки, тела, масса, движение, уравнения движения, возможное (действительное, виртуальное) перемещение, равновесие, уравнения равновесия, внутренние силы, кинетическая энергия, потенциальная энергия, полная энергия, центр тяжести, центр масс, состояния покоя, отклонение (из положения покоя), положение, характеристика. .. системы. Неразличимость. .. инерционных систем. Канонические уравнения. .. стационарной системы.  [c.43]

Мы установили, что потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия — движущиеся тела. И потенциальная, и кинетическая энергия изменяются  [c.48]

Энергией называется способность тела совершить механическую работу. В механике различают два вида энергии потенциальную и кинетическую.  [c.169]

Повторяя приведенные в 29 рассуждения о работе сил вблизи состояний устойчивого и неустойчивого равновесия, нетрудно убедиться, что для твердого тела существует такая же связь между характером состояния равновесия тела и значением его потенциальной энергии, как и для материальной точки. При этом для твердого тела величина потенциальной энергии в однородном поле тяготения определяется только положением центра тяжести тела. Потенциальная энергия твердого тела массы т в ноле тяготения, которое вблизи поверхности Земли можно считать однородным, определяется выражением  [c.415]

При распространении упругой волны распространяются волна скоростей, несущая с собой кинетическую энергию, и волна деформаций, несущая с собой потенциальную энергию. Происходит перенос энергии так же, как при распространении отдельного импульса. Течение энергии в определенном направлении происходит так же, как и в случае одного импульса. Деформированные элементы стержня движутся и при этом передают свою потенциальную и кинетическую энергию следующим элементам стержня. Энергия течет по стержню с той же скоростью, с какой распространяется волна. Но, как мы видели при движении сжатого упругого тела, энергия течет в направлении движения тела наоборот, при движении растянутого тела энергия течет в направлении, противоположном движению тела. Поэтому, хотя направление движения слоев стержня дважды изменяется за период, но вместе с тем меняется и знак деформации, так что энергия все время течет в направлении +х, т. е. в направлении распространения бегущей волны.  [c.680]


Итак, кинетическая энергия системы тел, движущихся поступательно, зависит только от скорости тел, а потенциальная энергия системы тел —только от их координат.  [c.54]

Энергию взаимодействия между телами называют потенциальной. Потенциальной энергией обладают, например, натянутый лук со стрелой или сжатая пружина.  [c.154]

Если тело линейно-упругое и изотропное, то А определяется по формуле (4.36). Таким образом, работа внешних сил расходуется на возникновение кинетической энергии тела и потенциальной энергии деформации. Формула (4.57) представляет закон сохранения механической энергии.  [c.73]

Если в равенство (3.78) подставить значения компонент по формуле (3.68), то получим удельную дополнительную работу как функцию компонент тензора напряжений aij, равную в случае линейно-упругого тела удельной потенциальной энергии деформации  [c.67]

Уменьшение потенциальной энергии грузов численно равно работе внешних сил при нагружении Рнс. 389 тела. Следовательно, потенциальная энергия де-  [c.409]

В любом другом деформированном состоянии потенциальная энергия Еа = и — W. Обозначим это состояние I. Здесь U — накопленная в теле энергия деформации, равная работе Uqi внутренних напряжений при переходе от состояния О в состояние 1. С другой стороны,  [c.196]

Это означает, что из всех напряженных состояний, статически соответствующих заданным внешним нагрузкам тела, действительное напряженное состояние должно удовлетворять условию (2.26), т. е. обращать приращение потенциальной энергии в нуль. Мояшо показать, что действительное напряженное состояние тела обращает потенциальную энергию тела в минимум.  [c.48]

Поскольку термодинамическая система представляет собой совокупность колоссального количества микрочастиц (молекул, атомов и т. п.), внутренняя энергия с точки зрения микроструктуры вещества представляет собой сумму энергий отдельных микрочастиц системы. Например, каждая молекула газа обладает кинетической энергией поступательного, вращательного и колебательного движений (взаимное колебательное движение атомов молекулы связано и с потенциальной энергией) потенциальной энергией межмолекулярного взаимодействия внутриатомной и внутриядерной энергией. Просуммировав все виды энергии для одной молекулы и умножив эту сумму на количество молекул в термодинамической системе, получим внутреннюю энергию этой системы. Разумеется, в рамках термодинамики такого рода расчеты не производятся по причине, указанной в гл. 1 термодинамика — наука феноменологическая и ее основные положения не связаны с микроструктурой тел.  [c.20]

Существуют две основные формы механической энергии потенциальная энергия, или энергия положения, и кинетическая анергия, или анергия движения. Чаще всего приходится иметь дело с потенциальной энергией сил тяжести. Потенциальной энергией силы тяжести материальной точки или тела в механике называется способность этого тела или точки совершать работу при опускании с некоторой высоты до уровня моря (до нулевого уровня). Потенциальная энергия численно равна работе силы тяжести, произведенной при перемещении с нулевого уровня в данное положение. Обозначив потенциальную энергию 77, получим  [c.164]

Внешняя энергия тела в представляет собой сумму кинетической и потенциальной энергий этого тела. Первая из них, если пренебречь кинетической энергией вращения тела вокруг центра инерции, равна шс 2, где с - скорость центра инерции тела, м/с т - масса тела, кг. Единица кинетической энергии — кг м /с = Н м = Дж. Вторая составляющая внешней энергии тела — внешняя потенциальная энергия — равна тдН, где 7 — ускорение свободного падения, м/с Я — высота, м.  [c.12]

В случае потока (открытой системы) в преобразовании энергии [см. формулу (e)J принимает участие помимо внутренней энергии потенциальная энергия давления и потенциальная энергия гравитации. Последняя, как правило, имеет пренебрежимо малое значение сравнительно с другими составляющими полной энергии рабочего тела. Пренебрегая ее значением, найдем, что энергия тела, способная превращаться в потоке в приращение кинетической энергии и во внешнюю работу, состоит из внутренней энергии U и потенциальной энергии давления pV. Сумма этих двух величин составляет новую физическую величину, называемую энтальпией, обозначаемую буквой /  [c.24]


Электростатическая энергия — потенциальная энергия взаимодействия электрических зарядов, т. е. запас энергии электрически заряженного тела, накапливаемый в процессе преодоления им сил электрического поля.  [c.37]

Магнитостатическая энергия — потенциальная энергия взаимодействия магнитных зарядов , или запас энергии, накапливаемый телом, способным преодолевать силы магнитного поля в процессе перемещения против этих сил. Источником магнитного поля может быть постоянный магнит, электрический ток.  [c.37]

Для работы гидравлических и пневматических систем необходимо их рабочим телам сообщать потенциальную или кинетическую энергию, которые получаются в преобразователе энергии. Таким преобразователем является насос (компрессор, вакуум-насос и т. п.), соединенный с электродвигателем. Механическая работа, получаемая от электродвигателя, преобразуется в насосе в механическую энергию рабочего тела. Эта энергия представляет собой сумму потенциальной энергии сжатия и кинетической энергии перемещения рабочего тела. Принцип работы преобразователя зависит от того, какая энергия рабочего тела является основной.  [c.25]

Между исполнительными механизмами и маховиком при установившемся движении цикловых машин-автоматов, помимо однозначного потока диссипативной энергии, непрерывно пульсирует знакопеременная избыточная энергия, превращающаяся с каждым рабочие циклом попеременно в кинетическую энергию неравномерно движущихся масс, в потенциальную энергию деформаций пружин и других податливых рабочих тел, в потенциальную энергию тел, перемещающихся в силовых полях, и т. д.  [c.154]

В соответствии с законом сохранения и превращения энергии тепло, подведенное к телу, соответствует возрастанию его внутренней энергии. Внутренняя энергия ( 7) тела складывается из энергии поступательного и вращательного движения молекул, составляющих тело, энергии внутримолекулярных колебаний, потенциальной энергии сил сцепления между молекулами, внутримолекулярной энергии, внутриатомной (энергия электронных оболочек атомов) и внутриядерной энергии.  [c.28]

Следует подчеркнуть, что работа расширения против сил внешнего давления производится только тогда, когда изменяется объем тела V и производится перемещение внешних тел. Если же V сохраняется постоянным, то какие бы изменения ни претерпевали любые другие параметры, характеризующие состояние тела (температура, внутренняя энергия, потенциальная энергия тела в поле тяготения и т. д.), работа расширения будет равна нулю. С другой стороны, работа, производимая газом при расширении его в пустоту, равна нулю, несмотря на то, что V меняется. Это видно из (1-18), так как = 0. Таким образом, с точки зрения возможности совершения телом (системой) работы против силы р<. параметр V является связанным с этой силой (как иногда говорят, сопряженным с этой силой).  [c.8]

Рассмотрим фрагмент пластины с боковой трещиной, имеющей начальную длину /о (рис. 24.2). Пластина нагружена усилиями, растягивающими ее вдоль оси у. Известно, что любое нагруженное тело аккумулирует потенциальную энергию упругой деформации, которую обозначим П. Концентрация этой энергии неравномерна по объему пластины. В частности, вблизи надреза имеем ненагруженный объем, боковая поверхность которого очерчена линией ВАС на рис. 24.2.  [c.416]

Внешние силы, приложенные к телу, совершают работу на вызываемых ими перемещениях. В результате этого происходит накопление потенциальной энергии деформации, которая при удалении внешних сил расходуется на восстановление первоначального недеформированного состояния тела. Если тело при нагружении испытывает только упругие деформации, то потенциальная энергия деформации численно равна работе сил, затраченных на деформацию тела. Энергия, накапливаемая в единице объема тела, называется удельной энергией.  [c.114]

Внутренняя энергия тела U складывается из энергии поступательного и вращательного движения молекул, составляющих тело, энергии внутримолекулярных колебаний, потенциальной энергии сил сцепления между молекулами, внутримолекулярной, внутриатомной (энергии электронных оболочек атомов) и внутриядерной энергии. Внутренняя энергия — экстенсивное свойство, т е. она пропорциональна количеству вещества т в системе. Величина и = U/m, называемая удельной внутренней энергией, представляет собой внутреннюю энергию единицы массы вещества.  [c.112]

Для линейно-упругого тела удельная потенциальная энергия выражается в форме однородного квадратичного полинома независимых переменных — деформаций Чу, Угх-  [c.18]

Физический смысл энтальпии будет понятен из рассмотрения следующего примера. На перемещающийся поршень в цилиндре с 1 кг газа помещетт гиря массой т кг (рис. 5-13). Площадь поршня / внутренняя энергия рабочего тела и. Потенциальная энергия гири равна произведению массы гири т на высоту S. Так как давление газа р уравновешивается массой гири, то потенциальную энергию ее можно выразить иначе  [c.65]

Уменьшение потенциальной энергии грузов численно равно работе внешних сил при нагружении тела. Следовательно, потенциальная энергия деформации численно равна работе внешних сил при нагружении системы или работе внутренних сил, совершенной в процессе разгружепия.  [c.387]

Если на те.ло действуют только упругие силы (силы трения отсутствуют), то при д ,ижении тела соблюдается закон сохранения энергии в его механической форме, т, е. полная энергия системы (в которую входит кинетическая энергия движущегося тела и потенциальная энергия деформации действующих на него упругих тел) должна осгаваться постоянной. Применение закона сохранения энергии не может дать ничего  [c.167]


О потенциальной энергии отдельного тела можно говорить Т г-да, когда, под этим подразумевается энергия, зависящая от взаимного расположения частей тела, например потенциальная энергия упругодеформирован-ного тела.  [c.53]

Используем полученные результаты для вычисления энергии связи кристалла. Энергия связи — это энергия, которую надо сообщить (в виде теплоты) кристаллу, для того чтобы разложить его на отдельные ионы, находящиеся далеко друг от друга. Энергию связи можно выразить через теплоту испарения твердого тела, энергию диссоциации МаС1 и энергию ионизации Ыа и С1. Энергию связи можно с достаточным приближением представить как произведение полного числа ионов в кристалле на минимальное значение потенциальной энергии У (го).  [c.23]

В случае линейно-упругого тела удельная потенциальная энергия деформацин W ец) и удельная дополнительная работа Л (at ) равны между собой (3.73). Однако и в этом случае все же полезно различать эти функции.  [c.67]

Гравистатическая энергия — потенциальная энергия ульт-раслабого взаимодействия всех тел, пропорциональная их массам. Практическое значение в земных условиях имеет энергия тела, которую оно накапливает, преодолевая силу земного притяжения.  [c.37]

Упругостная энергия — потенциальная энергия механически упруго измененного тела, освобождающаяся при снятии нагрузки проще всего в виде механической энергии.  [c.37]

Н. А. Умов пишет Картезианская точка зрения приводит к особому представлению об энергии. Подымая камень с поверхности земли, я запасаю в системе камень — земля работу, так называемую потенциальную энергию, которая проявляется и может быть взята из этой системы при падении камня на землю. Энергия, которою обладает тело в силу своего движения, есть энергия кинетическая. Таким образом в природе мы находим две формы энергии — потенциальную и кинетическую. С точки зрения современных картезианцев существует только одна энергия — кинетическая. Потенциальная энергия есть кинетическая энергия скрытых от нас движений .  [c.73]

ЗАКОН сохранения [количества движения ( при любом взаимодействии между телами, образующими замкнутую систему, скорость движения центра инерции этой системы не изменяется в электромагнитном поле в замкнутом объеме, ограниченном поверхностью, остается неизменным механический импульс и импульс электромагнитного поля ) массы масса (вес) веществ, вступающих в реакцию, равна массе (весу) веществ, образующихся в результате реакции материи в изолированной системе сумма масс и энергий постоянна момента углового если на систему не действуют моменты внешних сил (замкнутая система), то ее полный угловой момент остается постоянным по величине и направлению магнитного потока магнитный поток связан с частицами среды и перемещается вместе с ними массы масса тела не зависит от скорости его движения, а масса изолированной системы тел не изменяется при любых происходящих в ней процессах даркуляции скорости при движении идеальной жидкости баротронной в потенциальном поле массовых сил циркуляция скорости вдоль произвольного контура, проведенного через одни и те же частицы жидкости, не изменяется с течением времени энергии ( энергия не может исчезать бесследно или возникать из ничего механической в замкнутой механической системе сумма механических видов энергии (потенциальной и кинетической, включая энергию вращательного движения) остается неизменной ) и превращения энергии при любых процессах, происходящих в изолированной системе, ее полная энергия не изменяется энергии электромагнитного поля убыль энергии  [c.237]

Свободному электрону в твердом теле соответствует электромагнитная волна, способная распространяться в любом направлении. Однако поведение электрона изменяется, если он находится в области твердого тела, ограниченной потенциальными барьерами, примером которой может являться квантовый шнур с ограниченными размерами сечения. В этом случае в поперечных направлениях могут распространяться только волны с длиной, кратной геометрическим размерам структуры. При этом соответствующие им электроны могут иметь только определенные фиксированные значения энергии, тогда как вдоль шнура могут двигаться электроны с любой энергией. Запирание электрона хотя бы в одном из направлений сопровождается увеличением его импульса. Данное явление называется квантовым ограничением и приводит, с одной стороны к увеличению минимальной энергии электрона, а с другой - к дополнительному квантованию энергетических уровней, вследствие чего свойства наноразмерных структур будут отличаться от свойств материала, из которого они сформированы.  [c.150]


Смотреть страницы где упоминается термин Тела Энергия потенциальная — : [c.151]    [c.57]    [c.295]    [c.370]    [c.31]    [c.132]    [c.16]    [c.120]    [c.76]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.0 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 ]



ПОИСК



Зависимости между деформациями и напряжениями для упругого тела. Потенциальная энергия деформации

Закон Гука для изотропного однородного тела. Потенциальная энергия деформации

Колосова—Мусхелишвили потенциальная энергия упругого тела

Метод построения оценок коэффициента интенсивности напряжений через оценки полной потенциальной энергии тела с трещиной

Оценка удельной потенциальной энергии деформированного линейно-упругого тела

Оценки сверху для объема трещины и полной потенциальной энергии тела с трещиной

Полная потенциальная энергия и условия равновесия упругого тела

Потенциальная энергия деформации полубесконечного упругого тела

Потенциальная энергия деформации упругого тела

Потенциальная энергия упругодеформированного тела. Упругий гистерезис

Работа при деформации тела. Потенциальная энергия деформации

Работа силы и потенциальная энергия тела

Удельная потенциальная энергия деформации и удельная дополнительная работа линейно-упругого тела

Удельная потенциальная энергия деформации изотропного тела

Удельная потенциальная энергия деформации линейно-упругого тела

Удельная потенциальная энергия деформации несжимаемого упругого тела

Энергия деформации потенциальная изотропного тела

Энергия потенциальная

Энергия потенциальная деформированного тела

Энергия потенциальная единичног-о элемента тела

Энергия тела, движущегося под действием силы тяжести. Потенциальная энергия



© 2025 Mash-xxl.info Реклама на сайте