Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Азотирование ионное

Таким образом, наиболее перспективными видами химико-термической обработки являются диффузионное насыщение различными элементами циркуляционным способом и ионное азотирование. Ионная цементация тоже прогрессивный, экологически чистый и производительный процесс, но коробление деталей при заключительной термической обработке ограничивает ее использование.  [c.220]

В современном машиностроении самое широкое распространение получили цементация и азотирование. Цементация заключается в насыщении поверхностного слоя деталей углеродом на глубину до 0,2 мм. После закалки поверхностный слой цементованных деталей приобретает высокую твердость, а сердцевина остается вязкой. Азотирование заключается в диффузионном насыщении поверхностных слоев детали азотом. Наибольшее распространение получили газовое и жидкостное азотирование в печах и ваннах. В последние годы в промышленности внедряется более прогрессивный и эффективный способ азотирования — ионное азотирование, обладающее по сравнению с классическим рядом преимуществ. Основные из них — ускорение процесса в 3...5 раз, большая упругость и прочность слоя.  [c.35]


В отличие от ионного азотирования ионная цементация является менее изученным и редко применяемым процессом, хотя первые публикации по этому поводу появились сравнительно давно (пат. США № 954407, 1934 г.).  [c.146]

Для получения высоких антикоррозионных свойств образцы с титановыми покрытиями подвергались азотированию в тлеющем разряде. Ведение процесса ионного азотирования, контроль температуры и других параметров азотируемых деталей осуществлялись с помощью специально разработанного высоковольтного пульта, снабженного системой автоматической защиты от перехода тлеющего разряда в дуговой.  [c.54]

Повышение предела выносливости на воздухе оказалось одинаковым для газового и ионного азотирования (см. рис. 93).  [c.173]

При ионном азотировании диффузионный слой отличает высокая дисперсность и равномерность распределения нитридов (или карбонитридов) в л-твердом растворе. Это, по-видимому, и обусловливает большую пассивность отполированных образцов по сравнению с образцами, азотированными газовым методом. Свойства поверхности после ионного азотирования определяются специфическим тонким поверхностным слоем и более высокой гомогенностью.  [c.173]

Поверхностные свойства обеспечиваются как нанесением защитного слоя или покрытия, так и преобразованием поверхностного слоя металла при помощи химических, физических, механических методов, диффузионным насыщением, методов химико-термической обработки. Активно развиваются методы электронно-лучевой и лазерной закалки, вакуумное физическое и химическое напыление износостойких покрытий, ионное азотирование и др.  [c.199]

Ионное азотирование сокращает обш.ую длительность процесса, позволяет получить диффузионный слой регулируемого состава и строения, незначительные деформации и обладает большой экономичностью.  [c.244]

Азотирование в жидких средах 244 — ионное 243  [c.521]

Ряд разработанных методов ионного нанесения покрытий уже находит применение в промышленности. Успешно используется ионное азотирование. Стойкость неперетачиваемого инструмента из быстрорежущих сталей и  [c.155]

Ионное азотирование При 350—400 °С в специальных установках в полностью диссоциированном аммиаке или смеси азота с водородом Твердость HV 11—12,5 ГПа  [c.614]

Наряду с ионным азотированием применяют ионную цементацию. При ионной цементации требуется высокая температура нагрева поверхности (900—1050 °С), что достигается либо увеличением удельной мощности, либо применением дополнительного внешнего нагрева цементуемых деталей.  [c.125]


При ионной цементации и ионном азотировании наблюдается ускорение диффузионных процессов, особенно в начальной стадии, и сокращается об-  [c.125]

Для упрочнения быстрорежущего металлорежущего инструмента используется карбонизация, ионное азотирование, цианирование, лазерная закалка, электроискровое легирование, обработка паром и др. Во многих случаях повышается стойкость инструмента и ее стабильность. Результаты упрочнения зависят от условий применения инструмента. Области применения различных методов упрочнения приведены в табл. 3.4.5.  [c.351]

При ионном азотировании насыщение деталей азотом осуществляется в поле тлеющего разряда при напряжении около 1000 В и температуре 400-550 °С. Время обработки деталей в десятки раз меньше, чем при газовом азотировании.  [c.103]

Ионное азотирование применяют для деталей, изготовленных из хромистых, хромомолибденовых и других легированных сталей, содержащих достаточное количество элементов, которые обеспечивают повышение прочности и твердости диффузионного слоя при азотировании.  [c.104]

В последние годы значительное распространение получили ионные азотирование и цементация.  [c.224]

При ионной цементации и ионном азотировании наблюдается ускорение диффузионных процессов, особенно в начальной стадии, и сокращается общая длительность насыщения по сравнению с традиционными способами цементации и азотирования.  [c.224]

Значительное сокращение (в 2—3 раза) общего времени процесса достигается при азотировании в тлеющем разряде (ионное азотирование), которое проводят в разреженной азотсодержащей атмосфере (NH., или Na), при подключении обрабатываемых деталей к отрицательному элекгроду — катоду Анодом является контейнер установки. Между катодом (деталью) и анодом возбуждается тлеющий разряд, и положительные ионы газа, бомбардируя lumep х пость катода, нагревают ее до температуры насыщения. Процесс ионного азотирования реализуется в две стадии первая—(.чнсгка поверхности катодным распылением вторая — собственно насыщение.  [c.243]

К термодиффузионным способам можно отнести известные разновидности химико-термической обработки — цементацию, азотирование, цианирование и относительно новые — ионное азотирование и карбонитрацию. Общая черта этих процессов — насыщение поверхностных слоев деталей и инструмента различными элементами за счет диффузии из окружающей среды при повышенных температурах с образованием насыщенных твердых растворов и износостойких химических соединений диффундируемого элемента с основным компонентом сплава.  [c.11]

Приведенные результаты находятся в качественном соответствии с полученными ранее данными А.В.Рябченкова [20], который показал, что после азотирования при 600°С в течение 2 ч условный предел коррозионной выносливости стали 30 при /V = 10 цикл нагружения увеличивается примерно в два раза в водопроводной воде и в 0,04 %-ном растворе Na I, незначительно снижаясь с увеличением агрессивности коррозионной среды. Азотированная при 600°С в течение 0,5-5 ч сталь 45 при N = Ю цикл в растворе Na I имеет предел выносливости не намного ниже, чем в воздухе. Использование тлеющего разряда для проведения процессов химико-термической обработки, в частности азотирования, позволяет значительно сократить продолжительность насыщения и улучшить свойства получаемых диффузионных слоев [ 222]. Нами проведено исследование влияния ионного азотирования на выносливость стали в воздухе и в растворе Na I [223]. Для испытания применяли гладкие образцы диаметром 5 мм. Ионное азотирование выполняли на лабораторной установке МАДИ К-2 мощностью 1,2 кВт.  [c.172]

Для всех исследованных режимов ионного азотирования характерно повышение сопротивления усталости образцов из стали 38Х2МЮА, возрастающего с увеличением толщины диффузионного слоя. При толщине слоя 0,34 мм предел выносливости на 40 % выше, чем у неазотированной стали (см. рис. 93).  [c.172]

Условный предел коррозионной выносливости азотированных образцов увеличился более чем в 10 раз. В 3 %-ном растворе Na I азотированная сталь 38Х2МЮА находится в пассивном состоянии, причем ток растворения снижается с увеличением продолжительности ионного азотирования, а стационарный потенциал сдвигается в положительную сторону. Ионное азотирование в течение 8 ч сдвигает стационарный потенциал стали в положительную сторону более чем на 500 мВ по сравнению с неазотированной сталью. Одновременно исключается возможность пробоя пассивированного слоя вплоть до потенциала гидролиза воды. Тонкая механическая полировка поверхности стали, практически не сказывающаяся на общей толщине диффузионного слоя, полученного ионным азотированием в течение 8 ч, изменяет характер анодной поляризационной кривой. Потенциал пробоя становится даже более отрицательным, чем при менее продолжительном азотировании, но пассивность остается глубокой, хотя стационарный потенциал стали сдвигается в отрицательную сторону. ТакиКл образом, ионное азотирование стали затрудняет анодный процесс, причем наибольшей пассивирующей способностью обладает тонкий поверхностный микрослой.  [c.172]


Для оценки влияния метода азотирования на усталость исследовали образцы, подвергнутые ионному и га овому азотированию ею режимам, обеспечивающим образование диффузионного слоя толщиной 0,13 мм. При газовом азотировании в этом случае необходима выдержка в тече-  [c.172]

Результаты коррозионно-усталостных испытаний показали существенное различие в свойствах диффузионных слоев одинаковой толщины, полученных различными методами азотирования. Если после газового азотирования условный предел коррозионной выносливости увеличился по сравнению с неазотированной сталью в 4,5 раза, то ионное азотирование обеспечило повышение его в 6,5 раз. Полученные результаты связаны с изменением анодного поведения стали, азотированной различными методами. Так как фазовый состав диффузионных слоев и средняя концентрация в них азота при обоих методах азотирования одинаковы, то причину столь резкого различия в электрохимических свойствах поверхности следует искать в структурных особенностях строения слоев, характерных для каждого метода насыщения.  [c.173]

При газовом азотировании образование на поверхности е-фазы происходит в результате диффузии и постепенного увеличения концентрации азота в твердом растворе. При ионном азотировании в образовании диффузионного слоя помимо обычного процесса диффузии участвует процесс обратного катодного распыления, в результате которого атомы материала катода, выбитые с поверхности, соединяются в плазме тлеющего разряда с азотом и оседают на поверхности образца, покрывая ее равномерным слоем е -фазы. Если материалом служит легированная сталь, явление катодного распыления усложняется. В начале процесса один из металлов удаляется быстрее другого, в результате чего на поверхности сплава образуется тонкий спой нового однородного соединения. Это позволяет предположить, что приобретение поверхностью образцов из стали 38Х2МЮА защитных свойств связано, кроме нитридного слоя какого-либо из легирующих элементов.  [c.173]

На протяжении нескольких лет (с 1971 по 1976 г.) упорядочение пор наблюдалось только в материалах, облученных нейтронами или ионами, но не при облучении их в высоковольтном электронном микроскопе. В связи с этим в обзорах и статьях по упорядочению пор, опубликованных по 1976 г., к особенностям развития упорядоченной структуры пор относят отсутствие упорядочения пор при облучении материалов в высоковольтном электронном микроскопе [158]. В 1976 г. Чаддертон и др. [156] сообщили о формировании ГЦК-решетки пор во флюорите кальция при облучении электронами с энергией 100 кэВ. Фишер и Уильямс [161] наблюдали пространственное упорядочение пор при облучении в высоковольтном микроскопе азотированной стали 20/25, легированной титаном.  [c.162]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Весьма перспективно применение вакуумных ионно-плазменных методов — с ионным распылением и азотированием, методов КИБ, ПУСК, РЭП, распыление моноэнергетическими пучками ионов, с помощью магнетрон-ных распылительных систем. Износостойкие покрытия из нитридов, карбидов, окислов, сложных соединений, алмаза и др., а также антифрикционные покрытия из халькогенидов металлов, полимеров и других материалов наносятся при помощи реактивных методов с участием плазмо-химических реакций. Особенно перспективно применение указанных методов к прецизионным парам, насосам, топливной аппаратуре, газовым подшипникам, гидроприводу, точным направляющим и устройствам. Для обработки поверхностного слоя материала в целях повышения износостойкости используется ускоренный поток ионизированных атомов с энергией 100— 200 кЭВ в вакууме, с глубиной проникновения ускоренных ионов 0,1 мкм. Ионная имплантация применяется также для изменения триботехнических свойств, повышения коррозионной стойкости и прочности сцепления покрытия с основой.  [c.200]

Ионное а.зотирование. В последн.че годы иалучнло применение азотирование в тлеющем разряде (ионное азотирование), которое проводят в разреженной азотсодержащей атмосфере (МНд или М) при подключений обрабатываемых деталей к отрицательному. электроду — катоду. Анодом является контейнер установки. Между катодом (деталью) и анодом возбуждается тлеющий разряд,  [c.243]


Суш,ествует много традиционных способов создания поверхностных слоев с повышенной износостойкостью [15, 27, 65. 68]. Наиболее широко применяются методы поверхностной закалки, поверхностного наклепа, различные химикотермические способы обработки (в первую очередь цементация и азотирование) и т. д. Все шире применяются методы, основанные на воздействии на поверхностные слои деталей потоков частиц (ионов, атомов, кластеров) и квантов с высокой энергией. К ним следует отнести в первую очередь вакуумные ионно-плазменные методы [26, 33, 34, 45, 71, 104] и лазерную обработку [16, 23, 38, 104]. Суш,ест-венио развились также способы осаждения покрытий из газовой фазы при атмосферном давлении и в разряженной атмосфере [1, 42, 54, 105]. Мош,ный импульс получило применение газо-термических методов нанесення покрытий в связи с развитием плазменных-  [c.152]

Влияине режимов ионного азотирования на толщину и твердость износостойкого слоя (42)  [c.154]

ИХТО. Ионная химико-термическая обработка — прогрессивный способ азотирования, цементации, нитроцементации, си-лицирования, алитирования и т. д. в ионизированных газовых средах.В специальных установках все поверхности обрабатываемых деталей (катодов) бомбардируются ионами диффундирующих элементов в плазме тлеющего разряда, в результате чего происходит очистка, разогрев н диффузионное насыщение Дв талей. Для высокотемпературных процессов (цементация, Силицирование и ДР- вводится дополнительный Р  [c.496]

Выбор способа химико-термической обработки обусловлен не только требованиями, предъявляемыми к поверхностному слою, но и температурой, прн которой выполняется эта обработка, и теплостойкостью стали. Наиболее универсальными и эффективными методами упрочнения поверхностного слоя инструментов из быстрорежущих сталей является жидкое цианирование, карбонитрация, ионное азотирование и вакуумно-плазменное нанесение износостойких покрытий. Основные способы химико-термической обработки, применяемые в качестве заключительной операции для повышения стойкости инструментов из быстрорежущих сталей, приведены в табл. 18.  [c.613]

Ионное азотирование и цементация. Для активизации процессов в газовой среде и на насыщаемой поверхности применяют ионное азотирование. При этом достигается существенное сокращение общего времени процесса (в 2—3 раза) и повышение качества азотированного слоя. Ионное азотирование осуществляют в стальном контейнере, который является анодом. Катодом служат азотируемые детали. Через контейнер при низком давлении пропускается азотсодержащая газовая среда. Вначале азотируемая поверхность очищается катодным распылением в разреженном азотсодержащем газе или водороде. При напряжении около 1000 В и давлении 13,33—26,33 Па ионы газа бомбардируют и очищают поверхность катода (детали). Поверхность при этом нагревается до температуры не более 200 С. Затем устанавливается рабочий режим напряжение 300—800 В, давление 133,3—1333 Па, удельная мощность 0,7—1 Вт/см . Поверхность детали нагревается до требуемой температуры (450—500 С) в результате бомбарди-ровки оложительными ионами газа. Ионы азота поглощаются поверхностью катода (детали), а затем диффундируют вглубь. Параллельно с этим протекает процесс катодного распыления поверхности, что позволяет проводить азотирование трудноазотируемых сплавов, самопроизвольно покрывающихся защитной оксидной пленкой, которая препятствует проникновению азота при обычном азотировании.  [c.125]

В последнее время получило применение ионное азотирование, которое производится в разреженной азото-  [c.146]

В ряде отраслей промышленности используют ионное азотирование, ионитрирование или азотирование в плазме тлеющего разряда. Благодаря своим преимуществам эти виды азотирования постепенно вытесняют газовое азотирование.  [c.225]

Ионное азотирование осуществляют в герметичном контейнере, в котором создается разреженная азотосодержащая атмосфера. Для этой цели применяют чистый азот, аммиак или смесь азота и водорода. Размещенные внутри контейнера детали подключают к отрицательному полюсу источника постоянной электродвижу-  [c.225]


Смотреть страницы где упоминается термин Азотирование ионное : [c.70]    [c.470]    [c.832]    [c.161]    [c.39]    [c.227]    [c.227]    [c.37]    [c.171]    [c.173]    [c.244]    [c.154]    [c.226]   
Материаловедение Учебник для высших технических учебных заведений (1990) -- [ c.243 ]

Машиностроение энциклопедия ТомIII-3 Технология изготовления деталей машин РазделIII Технология производства машин (2002) -- [ c.384 ]



ПОИСК



Азотирование

Азотирование в тлеющем разряде (ионное

Азотирование в тлеющем разряде (ионное азотирование)

Иониты

Ионов

По ионная



© 2025 Mash-xxl.info Реклама на сайте