Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение высоких температур линий

Диаграмма состояния системы Аи — Р1 по данным работы [8] приведена на рис. 106. Для сравнения на том же рисунке пунктиром даны границы двухфазной области, установленные в работах [7] и [11]. Этот вариант диаграммы состояния является более достоверным, так как неограниченная растворимость в твердом состоянии при высоких температурах подтверждена такими чувствительными методами анализа, как рентгеновские исследования в высокотемпературной камере и измерения электросопротивления сплавов при высоких температурах. Линия солидус на диаграмме принята по данным [8], полученным изучением микроструктуры образцов, закаленных от различных температур. Границы двухфазной области (а + аг), установленные в работах [8 и [11], являются более достоверными, чем определенные в работах [3] и [7] измерением электросопротивления  [c.173]


Результаты третьей серии измерений представлены в табл. 4 и на рис. 3. Как видно на графике, полученные опытные данные позволяют надежно определить значения Ы8 во всей исследованной области температур вплоть до 372° С. При более высокой температуре линия насыщения не может быть достаточно точно определена в связи с тем, что проведенные нами предварительные исследования показали наличие особенностей в поведении коэффициента динамической вязкости воды в окрестностях критической точки.  [c.63]

Высоту зуба звездочки, измеренную от шаговой линии, при работе с ударными нагрузками или в условиях высоких температур (Т Э 300 °С) следует принимать  [c.436]

Применение теории для обработки данных по температурному уширению БФЛ. Температурное уширение БФЛ исследовалось экспериментально во многих работах. Однако в большинстве из них экспериментальное исследование сводилось лишь к измерению температурного закона уширения БФЛ с подгонкой теоретических параметров, которые полагались свободными. Было установлено, что при низких температурах уширение, как правило, подчиняется активационному закону ехр(-Ео/ Т ), а при высоких температурах следует закону близкому к Т . Экспериментальные данные такого рода качественно согласуются с теоретической моделью, согласно которой за уширение БФЛ ответственно квадратичное взаимодействие с квазилокальным колебанием, имеющим энергию Ео- Это квазилокальное колебание скорее всего порождается тем возмущением, которое примесная молекула вносит в силовую матрицу растворителя. В низкотемпературной области, где уширение подчиняется активационному закону ехр -Ео/кТ), логарифм полуширины БФЛ как функция обратной температуры описывается прямой линией, наклон которой позволяет сразу определить из опыта энергию Ео = huQ квазилокального колебания.  [c.156]

На диаграмме рис. 117 граница областей (т + 8)/8 бЬша успешно установлена одним из этих методов. Теперь нам осталось определить ожидаемое превращение т-фазы и его границы. Для установления границ (а + 7)/ и 7/(7 + 3) з области высоких температур подходит метод микроанализа. Если 7-фаза имеет кубическую структуру, то можно считать, что в области низких температур более подходит рентгеновский метод определения периода решетки. Для некубических решеток изменения в составе обычно вызывают изменения отношения параметров элементарной ячейки, поэтому вычисление параметров решетки по данным измерения рентгенограмм становится затруднительным. Параметры решетки могут быть определены, конечно, только в том случае, если линии на рентгенограммах достаточно резкие. Однако, когда это условие не выполняется, можно определить положение границ фаз, изме-  [c.217]


Точная интерпретация приведенной кривой и подобных ей усложняется тем обстоятельством, что форма линии, будучи гауссовой, изменяется до лоренцевой при высоких температурах. Гораздо большая точность может быть достигнута при прямых измерениях методом спинового эхо [76] концепция температурного сужения ширины линии обсуждается в [77].  [c.273]

Неограниченная растворимость в твердом состоянии при температурах, близких к линии солидус, и разрыв растворимости при небольшом снижении температуры были впервые обнаружены в работе [7] методами рентгеновского анализа и измерениями электрического сопротивления и теплопроводности сплавов в закаленном и отожженном состояниях. Данные [7] были подтверждены в работах [8, 10—18], выполненных методами рентгеновского анализа [8, 10, 16, 18], измерениями удельного электросопротивления сплавов при высоких температурах [8, 11] и другими методами физико-химического анализа.  [c.173]

Диаграмма состояния. Исследованиями [1], выполненными методами микроструктурного, рентгеновского, магнитного и дилатометрического анализов, а также измерением твердости установлено, что при высоких температурах (несколько ниже линий солидус) иридий и кобальт обладают не-  [c.552]

Поскольку потенциалы ионизации всех компонент воздуха гораздо больше затраты энергии при такой реакции, последняя (при не слишком высоких температурах) протекает гораздо скорее, чем непосредственная ионизация атомов и молекул ударами частиц. Константа скорости указанной главной реакции ионизации приведена в таблице 9. Поскольку в ионизации воздуха существенную роль играют атомы, расчеты кинетики ионизации в воздухе основаны на расчетах диссоциации молекул (вообще химических превращений). Такие расчеты выполнены в работе Лина и Тира [86], причем они хорошо согласуются с измерениями [87].  [c.397]

Определение Гс на основе измерений Ti, позволяющее проследить изменение Гс с температурой в интервале между Гс — 10" /со и Гс — 10 /со, несомненно, предпочтительнее определения по данным измерения ширины линии. В рассмотренных выше примерах ширина линии в высокотемпературной области достигает плато более низкого, чем для жесткой решетки, но еще вполне измеримого. Это интерпретировалось как следствие вкладов межмолекулярных взаимодействий, которые не могут быть усреднены за < чет вращения молекул. С другой стороны, во многих твердых телах, и в частности в металлах, не существует такого плато, и линия при высоких температурах становится особенно узкой, свидетельствуя о хорошем усреднении и межмолекулярного вклада. Последнее может происходить только в том случае, если молекулы (или атомы) диффундируют сквозь решетку. Этот процесс будет рассмотрен в следующем параграфе.  [c.423]

Измерение интенсивности линий при высоких температурах  [c.81]

В работе [346] рассмотрен пример поглощения такой молекулярной компоненты атмосферы, плотность которой можно считать постоянной вдоль направления распространения импульса. В этом случае температуру можно оценить из измерения поглощения по одной линии, имеющей температурную зависимость. Это приближение означает, что нижний уровень перехода исследуемой молекулы превышает основной уровень на величину средней тепловой энергии этих молекул в атмосфере. Измерения [346] проводили на молекулах кислорода, так как для него действительно сохраняется в любой точке пространства одинаковое соотношение концентраций с другими компонентами атмосферы. Кроме того, на кислороде удобно выполнять спектральные измерения высокого разрешения, так как  [c.381]

Из устройств активного контроля размеров на последних операциях наибольшее распространение на отечественных заводах и автоматических линиях машиностроения находят пневматические измерительные системы управления. Это положение объясняется тем, что пневматические измерительные системы надежнее, чем другие системы, сохраняют высокую точность в цеховых условиях вследствие их малой чувствительности к вибрации, изменению температуры, влиянию на результат измерения охлаждаю-ш ей жидкости при измерениях в зоне обработки изделия и др. Вместе с тем пневматические измерительные системы обладают существенным недостатком — повышенной инерционностью, которая вызывает рост динамических погрешностей измерений по мере форсирования режимов обработки изделий на автоматах при врезном шлифовании. Эффективность компенсации динамических погрешностей измерений в режиме слежения за обрабатываемым размером изделия зависит в значительной мере от удачного выбора параметров и варианта схемы компенсации [1].  [c.99]


По назначению уровнемеры разделяют на приборы аварийной сигнализации, приборы технологического контроля и пьезометрические манометры. Тип уровнемера выбирают в зависимости от назначения. Для целей аварийной защиты, когда требуется, чтобы уровень теплоносителя не выходил за установленные пределы, применяют однопозиционные уровнемеры, например в разделительных сосудах. Уровнемеры технологического контроля позволяют следить за процессом заполнения стенда, изменениями уровня в процессе эксплуатации. Необходимость контроля уровня во время эксплуатации особенно вал<на на многоконтурных стендах и при ненадежной работе вентилей на сливной линии. При нарушении герметичности в межконтурных теплообменных аппаратах происходит переток теплоносителя из одного контура в другой. Наличие перетока можно обнаружить по показаниям уровнемеров. Уход теплоносителя в сливной бак из-за неудовлетворительной работы вентилей также мол<но заблаговременно определить лишь при наличии уровнемеров. В зависимости от сложности стенда и решаемых на нем задач в качестве технологических уровнемеров могут быть использованы приборы всех трех типов. На одноконтурных стендах часто можно ограничиться установкой двух сигнализаторов, один из которых регистрирует допустимый верхний уровень, второй — допустимый нижний уровень. На многоконтурных стендах желательно предусматривать приборы непрерывного контроля. От приборов технологического контроля нет необходимости требовать высокой точности, погрешность измерения 5—6% бывает вполне достаточной. Более высокие требования к точности измерений предъявляются в тех случаях, когда высота столба жидкости служит мерой давления или влияет на исследуемый процесс. Самым простым, наиболее удобным на стендах с температурой до 200—250° С является штырьковый уровнемер в виде подвижного стержня, электрически изолированного от крышки бака. Изолирующие втулки изготовляют из стеклотекстолита. Между втулками ставят резиновые прокладки. Стержень включается в электрическую цепь последовательно с сиг-  [c.177]

Для измерения, записи и регулирования температуры применяют милливольтметры и потенциометры. Они относятся к вторичным приборам, так как одним из основных элементов их является термопара. Милливольтметр — прибор магнитоэлектрической системы, характеризующийся высокой точностью и чувствительностью. Принцип измерения температуры милливольтметром 3 (рис. 9.2) заключается в следуюш,ем. Под действием термоэлектродвижущей силы, развиваемой термопарой 1 в цепи возникает электрический ток, который, проходя через рамку 4, создает магнитное поле. В результате взаимодействия магнитного поля с полем постоянного магнита образуется вращающий момент рамки с указательной стрелкой, пропорциональный термоэлектродвижущей силе. Подгонка сопротивления линии осуществляется катушкой 2 в соответствии с внешним сопротивлением прибора.  [c.177]

Если для таких элементов, как ртуть и кадмий, невозможно создать условия для получения эмиссионного спектра от как бы невозмущенного атома, то следует перейти к исследованиям в поглощении. В эмиссионных источниках влияние температуры, электромагнитного поля и давления излучающих атомов на длины волн ртути и кадмия не поддается учету, в то время как в поглощающей камере электромагнитное поле не является обязательным, а давление и температура могут быть точно измерены. Инвариантность с высокой степенью точности значений длин волн линий поглощения является основным преимуществом при положительном решении задачи измерений с поглощающей камерой.  [c.70]

В физике плазмы рентгеновская спектроскопия применяется для диагностики источников двух типов с большим размером плазменного объема 0,1—1,0 м (например, токамаков) и источников малого размера 0,1—1,0 мм (лазерной плазмы, плазменного фокуса, вакуумной искры). Температура этих источников одного порядка — от единиц до нескольких десятков миллионов градусов, и основная часть линейчатого и непрерывного излучения приходится на мягкий рентгеновский диапазон от нескольких сотен электронвольт до нескольких килоэлектронвольт. В термоядерных установках проводятся исследования Н, Не, Ы, Ве — подобных ионов легких (О, С, Н) и тяжелых (Т1, N1, Ре) элементов, по которым определяются электронная и ионная температуры, ионный состав и состояние равновесия, а также исследуются макроскопические процессы и кинетика плазмы. Исследуемые линии принадлежат ионам примесей, поступающих в плазменный объем из стенок или остаточного газа, поэтому их интенсивность по сравнению с континуумом относительно невелика. Для разделения линий ионов различных элементов и кратностей необходимо разрешение порядка (1 — 3). 10 в отдельных, относительно узких, участках спектра. По изменению интенсивностей линий ионов различных кратностей можно судить об изменениях температуры, плотности и ионного состава плазмы по объему. Для таких измерений спектральная аппаратура должна иметь пространственное разрешение порядка 1 см для токамаков и 1 мкм для лазерной плазмы. Горячая плазма существует непродолжительное время (характерное время изменения параметров плазмы токамаков порядка 1 мс, лазерной плазмы — 10 нс), поэтому приборы должны обладать достаточно большой апертурой и многоканальной системой детектирования. Поскольку большинство координатно-чувствительных детекторов высокого разрешения имеют плоскую чувствительную поверхность, фокальная поверхность спектрометра тоже должна быть плоской, и угол падения излучения к ней должен по возможности быть небольшим.  [c.286]

Основными средствами замера на линиях служат специальные, автоматически действующие контрольные агрегаты, встроенные в механизм линии. Их назначение заключается в контроле размеров, полученных на каждой операции, контроле готовой детали и рассортировке на группы для селекционной сборки и даче сигнала агрегату, ведающему клеймением и маркировкой о результатах измерений. Такие измерительные приборы обладают настолько высокой чувствительностью, что могут даже производить контроль размеров 1-го класса точности, для чего на линии предусматриваются средства подогрева или охлаждения с тем, чтобы измерения производились при стабилизированной стандартной температуре. Для размеров 2-го и ниже классов точности стабилизация температуры не требуется. Наиболее часто применяются в качестве измерительных устройств для контроля линейных и диаметральных размеров электро- и пневмо-электроконтактные приборы, так как они способны давать показания высокой точности и, кроме того, могут совмещать несколько контрольных операций в одном измерительном автомате. Жесткими калибрами почти не пользуются главным образом из-за их довольно быстрого износа.  [c.284]


Проведены измерения спектра излучения лазера при совпадении центра контура линии излучения лазера с частотой поглощения вышеуказанных линий паров Н2О и О2 при минимальном коэффициенте отражения зеркал резонатора гз = 5 % и Г2 = 0,5. Следует отметить, что в связи с высокой концентрационной чувствительностью лидара при температурах —20 °С обрабатывались крылья линии. Для варьирования чувствительностью ЛП-лидара наиболее оптимальной оказалась его конструкция с регулируемым коэффициентом отражения Г2.  [c.218]

При высоких температурах линии довольно широки, следовательно, постоянство магнитного ноля во времени и пространстве, а также точность его измерения оказываются не очень сулцественными. В области температур жидкого гелия положение сильно меняется и ноле во всем объеме образца приходится поддерживать постоянным с точностью до 1 эрстед. Для точного измерения магнитного поля часто используют протонный резонанс, а одно-  [c.407]

Тогда сам по себе решается вопрос установления количественного соотношения между изменениями реактивности Доплера с pH и наблюдаемым рН-эффектом реактивности. Экспериментальные данные показывают очень строгое соответствие. Однако не получено прямых доказательств, подтверждающих этот механизм. Не измерено распределение и эффекты отложений на реакторных зонах. Что такое соотношение существует, точно указывает известное влияние pH на трение зоны (см. гл. 2). Если эти гипотезы правильны, то при высоком pH зона должна иметь более низкую общую температуру и более низкий запас тепла по сравнению с теплоносителем, чем та же зона, работающая при всех тех же условиях, но при более низком pH теплоносителя. Эксперименты в Сакстоне [25] определили эту разницу запаса тепла по измерениям изменения температуры циркулирующего теплоносителя после быстрой остановки реактора на полной мощности при одновременном перекрытии линии пара.  [c.189]

Данные при атмосферном давлении и различных температурах представлены на рис. 12, из которого видно хорошее качественное и количественное согласование значений, полученных различными исследователями. Наибольшее расхождение имеет место при высоких температурах. В этой области были известны только результаты Брауне, Линке [4.5], полученные при измерении методом колеблющегося диска, и Бача, Рао [4.8] — методом капилляра. В связи с этим были проведены дополнительные измерения вязкости аммиака методом капилляра на установке, описанной в работе [4.12]. При высоких температурах эти результаты хорошо согласуются с данными Бача и Рао. Анализ представленных на рис. 12 данных, сопоставление и усреднение их позволили составить таблицу рекомендуемых значений вязкости аммиака для пределов температур 200—1000 К (табл. 40). Эти значения соответствуют сплошной линии на рис. 12  [c.222]

Для определения линии солидус при очень высоких температурах больше всего пригоден метод Пирани и Альтертур-на (107]. Он заключается в непосредственном измерении оптическим пирометром интенсивности излучения абсолютно черного тела в центре прямоугольной металлической полосы, нагретой током. Когда через такую полосу с отверстием, высверленным перпендикулярно ее длине, пропускают ток, наибольший разогрев получается у самого отверстия, где сечение полосы минимально. Температура плавления может быть легко установлена при наблюдении оптическим пирометром середины отверстия. При повышении температуры полосы оно будет казаться ярче окружающей поверхности, которая еряет тепло через радиацию. При достижении температуры плавл1ения внутри отверстия образуется капля металла, и оно будет казаться темным, так как лучеиспускание расплавленного металла значительно меньше, чем твердого. Таким образом, при температуре пл авления внутри отверстия наблюдается темное пятно или все отверстие темнеет. Это зависит от скорости иа-грева.  [c.203]

Известно также значительное количество работ, в которых были предприняты попытки прямого определения состава 7-фазы в момент ее формирования. Большинство измерений проведено в условиях скоростного нагрева, когда, как справедливо считали авторы, затруднены диффузионные процессы, что давало надежду зафиксировать раздельно эффект перестройки решетки и последующее растворение карбидной фазы и насыщение аустенита углеродом, если процесс образования аустенита действительно происходит в две стадии. Однако трактовка результатов этих работ затруднена значительным смещением в область более высоких температур регистрируемого начала а -> 7-превращения при скоростном нагреве. Так, в работе [ 13] о составе 7-фазы судили по температуре мартенситного превращения, которая, как известно, зависит от содержания в аустените углерода. Бьшо показано, что после скоростного нагрева до 850 - 870°С в сталях У8, У12, ШХ15 фиксируются две мартен-ситные точки одна в районе 500 — 600°С, что соответствует малоуглеродистому аустениту (0,1 - 0,2 % С), вторая около 300°С, что соответствует 7-фазе с содержанием углерода 0,6 — 0,7 %. Однако, поскольку температура образования малоуглеродистого аустенита в этой работе не зафиксирована, его можно рассматривать либо как метастабильное состояние, либо, как это делают авторы, объяснять его происхождение смещением температуры его образования до 850 - 870 С, при которой концентрация 0,1 — 0,2 % С соответствует линии GS равновесной диаграммы.  [c.10]

Для измерения темературы то°п газа применялся метод обра-Рис. 6-16. Зависимость Щения спектральных линий. 9r/9k от температуры для Р. Матула [Л. 163] получил диссоциированного СО2. с ПОМОЩЬЮ ударной трубы экспериментальные данные по теплопроводности смеси Не — Аг в диапазоне температур 650—5 ООО" К- Экспериментальные данные при таких высоких температурах получены впервые, поэтому их необходимо сравнить с теоретическими результатами.  [c.226]

Практическая реализация этого метода измерения температур пламени сопровождается часто значительными трудностями, обусловленными тем, что наблюдаемый контур спектральной линии вызван не только допплеровским ушир ением, но и так называемым лоренцов-ским уширением. Последнее появляется вследствие столкновения молекул газа между собой и зависит от плотности газа и эффективных сечений молекул. При нормальном атмосферном давлении и не слишком высоких температурах лоренцовское уширение оказывается значительно больше допплеровского. Только при давлениях 0,01 атм и ниже можно наблюдать достаточно чистый допплеровский контур.  [c.421]

В заключение отметим, что собственное атомное разупорядо-чение существенным образом влияет на магнитные свойства ферритов и это обстоятельство надо учитывать, когда надо получить материал со строго повторяющимися параметрами. В качестве технологического приема, стабилизирующего магнитную индукцию и квадратность термостабильной петли гистерезиса, иногда рекомендуют дополнительные к основной термообработке отжиги при температурах 700—800°С в течение времени, достаточном для равновесного перераспределения ионов по подрешеткам (продолжительность отжига зависит от природы феррита 2]). Примером значительного влияния собственно атомного разупорядочения на магнитные свойства является поведение феррита никеля, резко закаленного с высоких температур и обладающего определенной концентрацией ионов Ni + в Л-узлах решетки (при 1300°С в формуле Fe " [Ni Fe2ij ]04 JT = 0,9955). Как показали измерения [142], появление Ni + в тетраэдрических узлах шпинельной структуры приводит к изменению анизотропии кристалла и ширины линии ферромагнитного резонанса.  [c.116]

Изучение спектров комбинационного рассеяния (КР) малых частот было начато Гроссом и Буксом [ ]. В отличие от обычного КР, где индуцированные световой волной дипольные моменты молекул модулируются внутримолекулярными колебаниями, в КР малых частот такая модуляция осуществляется вращательными качаниями молекул. Частоты линий КР малых частот позволяют находить частоты вращательных качаний молекул. Дополнительные сведения о динамике вращательного движения могут быть получены из измерений ширин линий КР малых частот при различных температурах. В последнее время произведены измерения температурной зависимости ширин линий КР малых частот ряда поликристаллов. Коршунов и Бондарев [ ] в спектрах КР малых частот нафталина и некоторых парадигалоидозамещенных бензола обнаружили линейную зависимость ширин линий от температуры. Основную причину уширения авторы приписывают ангармоничности вращательных качаний. Теоретически полученная ими температурная зависимость ширин качественно согласуется с экспериментом. Бажулин, Раков и Рахимов [ ] в спектрах КР малых частот кристаллического и-дихлорбензола, а также Бажулин и Рахимов [ ] в спектрах кристаллических толана и стильбена наблюдали линии, ширины которых при относительно высоких температурах быстро возрастали с температурой, не подчиняясь линейному закону. Для объяснения наблюденных фактов в работах [ ] и [ ] предполагается, что наряду с ангармонизмом вращательных качаний существенный вклад в ширину линий может быть обусловлен случайными переориентациями молекул между различными равновесными положениями в кристаллической решетке.  [c.319]


Для перфторуглеродов нет сведений о плотностях жидкости и пара на линии насыщения, поэтому пришлось прибегнуть к приближенному расчету о по экспериментально измеренной капиллярной постоянной. Были использованы два способа расчета. Первый из них основан на допущении постоянства парахора вещества в широком температурном интервале [124]. Во втором — применяются однонараметрические уравнения термодинамического подобия [126—129] для нахождения значений р, р", которые затем подставляются в (5.4). Полученное вторым путем поверхностное натяжение применялось для расчета и перфторуглеродов. Первый способ дает при высоких температурах более низкие (на 1—3%) значения а [124], за исключением ф-пентана, у которого отклонение имеет другой знак. В однопараметрическом варианте теории термодинамического подобия отклонение веществ от закона соответственных состояний учитывается введением индивидуального параметра Р  [c.131]

Для определения постоянных решетки металлического и бромистого серебра при комнатной температуре вводилась поправка на усадку пленки по методу Штрауманиса и Меллиса [10]. Многие другие виды ошибок были сведены к минимуму путем получения значений постоянной решетки, экстраполированных до 0=90° при помощи графика Нельсона и Райли [11]. Тот же график использовался при высоких температурах для определения постоянной решетки металлического серебра, но в этом случае линии обратного отражения бромистого серебра исчезали вследствие сильного колебания атомов. Поэтому использовались линии прямого отражения бромистого серебра, и в измеренные значения постоянных решетки вводились такие поправки, которые вытекали нз измерений соседних отражений от серебра.  [c.38]

Весьма обширной является группа приборов для пламенной фотометрии и для изучения эмиссионных спектров. Они удобны как в широкой лабораторной практике, так и при научных исследованиях. Устройство таких фотометров весьма просто, а точность достаточна для проведения тонких исследований структуры сложных растворов. Приборы для пламенной фотометрии включают специальные горелки, распылители исследуемого раствора, камеры с исследуемой жидкостью, оптические системы проекции пламени на фотоэлектрический преобразователь и блоки измерения с регистраторами. Вся фотометрическая часть приборов аналогична уже рассмотренным абсорбционным фотометрам. Пламя горелки должно иметь высокую температуру, поэтому нашли применение такие горючие смеси, как воздух — ацетилен, воздух — пропанбутан и др. Так как наличие определенного вещества характеризуется присутствием в эмиссионном спектре специфических линий, для их выделения используются узкополосные интерференционные светофильтры. Отличия различных моделей пламенных фотометров и заключаются в основном в конструктивном исполнении перечисленных выше узлов.  [c.267]

Тепловое возбуждение в газе приводит к уширению линий, вследствие чего полуширина линии оказывается пропорциональной YTIm, где т — атомный вес элемента. Для высоких температур и не очень тяжелых атомов полуширину линии легко измерить. Таким образом, допплеровское уширение дает удобный метод для измерения температур этот метод особенно ценен при измерении кинетической температуры, которая спектроскопически не может быть непосредственно измерена никаким иным способом.  [c.300]

III. Измерение максимумов интенсивности. При весьма высоких температурах можно применять иную спектроскопическую методику, предложенную Ларенцом и Бартельсом [Л. 20 и 21], связанную не столько с измерением относительной интенсивности, сколько с определением точек максимальной интенсивности для данной линии спектра. В формуле (8) множители, зависящие от температуры, составляют выражение  [c.26]

Измерительная камера установки и соединенный с ней трубопроводом парогенератор располагаются внутри кожуха. Объем под кожухом при работе заполняется инертным газом. Это обеспечивает необходимые условия для работы молибденовых нагревателей и термопар при высоких температурах и разгружает камеру и парогенератор от внутреннего давления. Установка имеет систему электрических нагревателей, создающих необходимые рабочие температуры, систему форвакуумных, газовых линий для очистки измерительной камеры и парогенератора и заполнения их исследуемым газом, а также систему заполнения парогенератора жидкостью, если измерения производятся в перегретых парах. Измерения при высоких температурах требуют особого внимания к созданию равномерного температурного поля по высоте камеры. С этой целью на рабочую камеру надевался медный блок, заделанный в чехол из нержавеющей стали. Для компенсации тепловых утечек по торцам камеры были установлены специальные нагреватели. Общая электрическая мощность их составляла примерно 6 кет. Уменьшение лучистого теплообмена достигалось путем установки ряда экранов из нержавеющей стали. Нагреватели были выполнены из молибденового провода диаметром 0,8 мм. Температура измерялась тремя образцовыми термопарами платина — платинародий Ю 2-го класса точности. Корольки термопар заделывались непосредственно на стенке измерительной камеры по высоте.  [c.110]

Температуры торможения на входе в камеру сгорания Го1 = 7 ох (т. е. температуре перед сгоранием) после сгорания (т. е. перед истечением), равная температуре торможения вытекающих газов Го4. Однако произвести точный замер температуры продуктов сгорания при составах смеси, близких к стехиометриче-ским (а 1), затруднительно, так как измеряемые температуры, превышающие 2000 С, лежат за пределами термостойкости существующих термопар. Измерения столь высоких температур приходится производить спектрографически, например, методом обращения О-линий натрия. Метод трудоемок, нуждается в сложном оборудовании и квалифицированном персонале. Поэтому обычно измеряют только температуру перед сгоранием Гох. Температуру торможения после сгорания вычисляют по уравнению расхода (2. 49), измерив давление роз и Рз в выходном сечении камеры 5з, площадь которого известна  [c.247]

Температура отработанных газов по мере уменьшения геометрического угла опережения подачи топлива приближается к температуре отработанных газов для дизеля, работаюш,его на дизельном летнем топливе. Температура охлаждающей воды также влияет на рабочий процесс дизеля, работающего на топливных эмульсиях. Повышение этой температуры до 95° С благоприятно влияет на рабочий процесс, особенно при повышении содержания воды в топливе до 25%. Кривые влияния содержания воды в эмульсии на удельный расход топлива, основные показатели рабочего цикла и работоспособность дизеля (рис. 129) показывают, что при увеличении содержания воды в эмульсии до 15% удельный расход топлива уменьшается. Снятые при этих условиях индикаторные диаграммы характеризуются (в пределах точности измерений) уменьшением максимального давления цикла на 3% и температуры отработанных газов на 2%. При содержании водной фазы в эмульсии ТУР = 15% был достигнут наименьший удельный расход топлива (215 л. с. ч), что по отношению к натуральному дизельному топливу дает экономию в 2—3%. При уменьшении содержания воды в эмульсии указанные параметры приближаются к показателям работы дизеля на дизельном летнем топливе. При увеличении содержания воды в топливе до = 25% удельный расход топлива не отличается от расхода безводного дизельного летнего топлива, температура же отработанных газов снизилась на 3%, а максимальное давление цикла — на 6%. При дальнейшем увеличении содержания воды в эмульсии до 35% удельный расход топлива увеличился до 3%, а максимальное давление цикла снизилось на 10%. Температура отработанных газов в последнем случае имеет тенденцию к повышению. Уменьшение удельного расхода топлива при содержании в нем до 15% воды связано с улучшением процесса смесеобразования вследствие внутритопочного дробления (микровзрывов), что обеспечивает более высокую полноту сгорания. Это подтверждается также увеличением коэффициента избытка воздуха Нв на 2,5—3% при постоянном расходе воздуха, а также соответствующим увеличением индикаторного к.п.д. Сказанное согласуется с данными о работе топочных устройств, где благодаря улучшению смесеобразования при использовании эмульгированных топлив (1Кр = 15%) к.п.д. агрегатов остается на том же уровне,, что и при сжигании безводных топлив. Повышение удельного расхода вызывается увеличивающимися затратами тепла на испарение и перегрев воды, находящейся в топливе, которые уже не компенсируются преимуществами от микровзрывов это замедляет процесс сгорания и тормозит догорание на линии расширения. Подтверждением служит рост температуры отработанных газов и максимального давления цикла.  [c.249]


Основной сферой Применения многолучевых интерферометров Фабри-Перо является спектроскопия высокой разрешающей силы [61, 117, НО]. Свойство Интерферометра разрешать очень близко расположенные друг к другу линии источника позволяет успешно исследовать сверхтонкую структуру спектральных линий, обусловленную наличием у атомного ядра механического и магнитного моментов, свойства атомного ядра по изотопическому сдвигу спектральньгх линий, вызванному движенйем ядра и электрона вокруг общего центра тяжести, влияние внешних электрических полей на тонкую структуру линии и т. д. Наряду с этим интерференционные спектроскопы Фабри-Перо широко применяются для определения температуры в плазме, пламенах, газах, для измерения скорости течений по допплеровскому уширению, для изучения спектров поглощения и т. д.  [c.5]


Смотреть страницы где упоминается термин Измерение высоких температур линий : [c.393]    [c.134]    [c.43]    [c.474]    [c.40]    [c.291]    [c.28]    [c.231]    [c.346]    [c.14]    [c.423]    [c.361]    [c.173]    [c.34]   
Температура и её измерение (1960) -- [ c.299 , c.355 , c.366 ]



ПОИСК



Измерение высоких температур

Измерения температур

Температура высокая



© 2025 Mash-xxl.info Реклама на сайте