Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихрь цилиндрический

Если пренебречь массовыми силами и силами молекулярного трения, для установившегося течения (d/dt = 0) уравнение моментов импульса в проекции на аксиальное направление цилиндрической системы координат для вынужденного вихря  [c.202]

Существенно отметить, что ламинарное движение является вихревым. Чтобы убедиться в этом, найдем величину компонентов вихря Т1 и для этого движения. Для ламинарного потока в цилиндрической трубе  [c.159]


При поступательно-вращательном течении жидкости по трубе имеются две области движения. Собственно жидкость течет в кольцевом зазоре, прилегающем к стенкам трубы и заключенном между радиусом трубы и радиусом вихря г.. Внутри этого кольцевого зазора жидкость движется вдоль трубы со скоростью w и вращается со скоростью о)ф, удовлетворяющей условию сохранения момента скорости. На оси трубы образуется цилиндрическая полость радиуса г.. В этой полости жидкости нет она или пуста, или заполнена воздухом (в том случае, когда труба сообщается с атмосферой) если учесть способность жидкостей испаряться, то будет ясно, что в этой полости будут находиться также пары жидкости. Заполняющие эту полость воздух или пары жидкости вращаются со скоростью, равной аг, т. е. как твердое тело по этой причине полость называют воздушным или паровым вихрем.  [c.296]

Движение с воздушным вихрем на оси трубы. Рассмотрим случай, когда внутренний вращающийся цилиндр отсутствует тогда на оси трубы образуется свободная от жидкости цилиндрическая полость радиуса Гд ( воздушный вихрь ).  [c.655]

Подъемную силу можно получить и при обтекании симметричного профиля, например вращающегося цилиндрического тела (ротора) или вообще вихря. Вследствие вязкости жидкости вокруг ротора создается циркуляционное движение жидкости со скоростью Си- Это движение накладывается на основное со скоростью в результате чего при указанном на рис. 8.6 направлении вращения под ротором происходит уменьшение результирующей скорости —Си, а над ротором ее увеличение + с . Если полный напор в сечении потока одинаков, то вследствие разности суммарных скоростей над и под ротором согласно уравнению Бернулли давление станет больше р2- В итоге возникает подъемная сила Яу = (р1 —Р2) 5. Это явление называют эффектом Магнуса.  [c.127]

Теорема Жуковского, опубликованная им в 1906 г., сыграла важную роль в развитии теории крыла, которая явилась основой теории летательных аппаратов. Эта теорема получила также широкое применение в теории гребных винтов кораблей, теории лопастных гидравлических, паровых и газовых турбомашин. Ее значение определяется прежде всего тем, что она вскрывает физическую причину появления подъемной силы такой причиной являются вихри, мерой интенсивности которых служит циркуляция скорости. При этом несущественна причина, порождающая эти вихри. В рамках теории идеальной жидкости, циркуляция может быть порождена только вихрями, которые мы считаем существующими в потоке, однако не можем указать источник их появления (по крайней мере для однородной несжимаемой жидкости). Такие вихри, определяющие подъемную силу, Жуковский называл присоединенными. В реальной жидкости циркуляция порождается действием сил трения, которые развиваются и проявляются в пограничном слое, образующемся у поверхности тела (см. гл. 8 и 9). Таким образом, присоединенные вихри Жуковского являются теоретическим эквивалентом системы вихрей, возникающих в пограничном слое реальной жидкости. Теорема Жуковского указывает на то, что целесообразно изменяя форму профиля обтекаемого цилиндрического тела, т. е. изменяя интенсивность вихрей в пограничном слое, можно соответственно изменять подъемную силу.  [c.235]


Рассмотрим общую схему решения задачи обтекания заданного цилиндрического тела потенциальным потоком (рис. 7.21). Представим, что контур тела покрыт непрерывно распределенными точечными вихрями. Выделим на контуре в окрестности точки У ) элементарный участок ds, на котором сосредоточены вихри, создающие в потоке циркуляцию Г. Ввиду малости отрезка рассматриваем эти вихри как один точечный вихрь с центром в точке (л ,, у,). Тогда функцию тока течения, создаваемого этим вихрем, можно выразить формулой  [c.248]

Эти соотношения являются начальными условиями для решения нестационарной задачи о диффузии вихря. При отсутствии влияния твердых границ или иных возмуш,ений естественно считать, что все время движения и, = = О, т. е. частицы перемещаются по круговым траекториям. Поэтому, пренебрегая влиянием массовых сил (считая, например, что вихревая нить вертикальна), движение можно описать уравнением Навье—Стокса (5.14) в цилиндрических координатах, которое в данном случае примет вид  [c.302]

Учитывая выражения (7.109) для компонент вектора вихря Q в криволинейных координатах и то, что для цилиндрических координат Hr = = , Не = г, г в рассматриваемом случае = = Wj = О, выразим вихрь формулой  [c.302]

В заключение отметим, что при изучении обтекания цилиндрических тел нельзя значения сил, полученных для плоской задачи, распространять на все тело путем простого их умножения на размер цилиндра вдоль образующей. Дело в том, что при обтекании цилиндров конечной длины возникают так называемые концевые эффекты , которые заключаются в образовании вблизи концов цилиндра вторичных течений, создающих за цилиндром особую систему вихрей, которая может заметно влиять на силы, действующие на тело. Такая система вихрей (вихревая пелена) изменяет направление поперечной силы Жуковского, что приводит к появлению индуктивного сопротивления. Эти вопросы изучаются в теории крыла.  [c.398]

Вихревой слой. До сих пор мы рассматривали только одиночные или дискретно расположенные источники, вихри, диполи. Представим теперь, что вдоль некоторой цилиндрической поверхности, след которой на плоскости чертежа изображается кривой (рис. 116), в каждой ее точке расположены точечные вихри, т. е. рассматривается непрерывное распределение вихрей на поверхности. Будем называть совокупность этих вихрей вихревым слоем. В теории идеальной жидкости вихревой слой может служить моделью встречающихся в реальных жидкостях поверхностей, при переходе через которые скорость течения меняется очень резко.  [c.237]

Вспоминая выражения для компонент вектора вихря й в криволинейных координатах (7-109) и учитывая, что для цилиндрических координат Я,- = = 1, Яд = г, а в нашем случае и,. =  [c.337]

Увеличение угла атаки (рис. 6.1.4,а) приводит к тому, что оторвавшийся на подветренной стороне поток 1 не попадает на поверхность тела. В непосредственной близости от места перехода носовой части в цилиндрическую поток разгоняется до сверхзвуковой скорости, возникает волна разряжения 2, формируется пограничный слой 3. Ниже по потоку образуется скачок уплотнения 4, за которым происходит отрыв и появляются два вихря 5 с противоположным направлением вращения (как и при обтекании длинных тел вращения под углами атаки [45]). Если удлинить иглу (рис. 6.1.4,6), то отрыв с образованием вихрей 5 будет происходить уже на подветренной  [c.387]

Итак, нами установлено, что при истечении рабочего тела из цилиндрического или суживающегося сопла скорость потока на выходе из него не может быть больше местной скорости звука. А это значит, что при истечении упругих тел, в частности идеального газа через цилиндрические и суживающиеся сопла в среду с давлением рср < Ркр, только часть потенциальной энергии потока, соответствующая перепаду давления от /)i до ркр, переходит в кинетическую энергию потока, хотя поток по выходе из сопла и будет продолжать расширяться с понижением своего давления от ркр до рср, но это расширение будет происходить неорганизованно и потенциальная энергия потока будет расходоваться на образование вихрей и т. д.  [c.48]


В области, внешней к цилиндрическому вихрю, поле скоростей такое же, как от точечного вихря, расположенного в центре цилиндрического вихря и имеющего ту же, что и цилиндрический вихрь, циркуляцию.  [c.294]

Следовательно, внутри цилиндрического вихря с плотностью интенсивности у = 2(о распределение скоростей получается таким же, как при вращении жидкости как твердого  [c.294]

Динамическая теория цилиндрических вихрей  [c.295]

Рассмотрим установившееся движение идеальной несжимаемой жидкости от круглого цилиндрического вихря, кинематическое поле скоростей которого определено в предыдущем параграфе. В этом движении все частицы движутся по концентрическим окружностям с постоянной скоростью, зависящей от радиуса, и, следовательно, имеют только центростремительное ускорение, равное по величине v lr. Уравнения Эйлера в проекции на направление радиуса дают  [c.295]

Принцип работы циклонной топки заключается в том, что в почти Горизонтальном (рис. 20-3,а) или вертикальном (рис. 20,3,6) цилиндрическом предтопке 1 относительно небольшого диаметра создается га-зо-воздушный вихрь, в котором частицы горящего топлива многократно обращаются до тех пор, пока они не сгорают почти полностью во взвешенном состоянии. Продукты сгорания из предтопков при сжигании твердого топлива поступают в камеру дожигания 2, а из нее — в камеру охлаждения 3 и далее в газоходы котельного агрегата. Шлак из предтопков удаляется в жидком виде через летки 5, причем для увеличения количества уловленного шлака между камерой дожигания и камерой охлаждения или между циклонными предтопками и камерой дожигания устанавливают шлакоулавливающий пучок труб 4. При сжигании мазута, а иногда и измельченного твердого топлива камеры дожигания не сооружают и продукты сгорания выводят непосредственно из предтопков в камеру охлаждения.  [c.258]

Конический канал, установленный за цилиндрическим участком, является диафрагмой, которая способствует уменьшению продольных пульсаций скорости в приосевой области цилиндрического канала вследствие формирования приосевого вихря, движущегося со значительным ускорением (см. разд. 4.2).IВ связи с этим характер радиального распределения 6 на входе отличается от течения в недиафрагмированном канале (рис. 4.12,а). Это отличие возрастает при уменьшении и увеличении интенсивности закрутки потока на входе.  [c.87]

Путем изменения соотношений осей эллипса и эксцентриситета можно на поверхности образца концентрировать лучистую энергию с различной плотностью, добиваясь равномерного всестороннего нагрева (например, для цилиндрических образцов) или одностороннего (для образцов прямоугольного сечения, листовых образцов). В качестве источника лучистой энергии используется высокоинтенсивная электрическая дуга переменного тока с коаксиальным расположением угольных электродов 1 ж 2. Дуга помещена в кварцевую трубку 3 ж стабилизируется вихрем инертного газа посредством цилиндрического завихрителя 4. Последнее обстоятельство полностью изолирует рабочую полость печи от продуктов горения угольной дуги. Нагрев образца осуществляется в контролируемой атмосфере, для этого его устанавливают в кварцевой трубке 10. Охлаждение образца осуществляется сжатым газом. Форма печи в виде эллиптического цилиндра позволила распределить тепловой поток равномерно по длине образца. Высота эллиптического цилиндра обусловлена размером высокотемпературной части дуги — столбом и кратерами, т. е. элементами, излучающими свыше 90% энергии всей дуги.  [c.55]

Как показано во всех руководствах по гидродинамике (см., например, [15] X систему уравнений Эйлера (1.1) можно привести к форме Громе-ко-Лэмба. Для этой цели необходим вектор вихря скорости rot v = = V XV, составляющие которого по базисным векторам в цилиндрической системе координат  [c.13]

В рассматриваемом ниже простейшем случае цилиндрического потока с круглым поперечным сечением вектор вихря скорости будет иметь только две составляющих  [c.14]

Беллами-Найте. Разрушение вихря в цилиндрической трубе. - В кн. Труды американского общества инженеров-механиков. Теоретические основы инженерных расчетов. Т. 2. Пер. с англ. М. Мир, 1976, с. 280.  [c.169]

Известны два типа вихрей цилиндрический (переносный), при котором ось вала перемещается параллельно оси подшипника, и конический, при котором ось вала совершает движение по конусу. В зависимости от гидродинамических параметров подшипников, числа II расположения опор и жесткости системы частота вихревого движения может быть равна 1/2, 1/3, 1/4, 2/3 частоты вращения вала. Наиболее изучен и имеет наибольшее значение цилиндрический полускоростной вихрь (частота которого равна 1/2 частоты вращения вала).  [c.341]

В предшествующих параграфах предполагались вихри (цилиндрические бесконечно тонкие), расположенные в бесконечной жидкости, которую мы рассматривали только в сечении плоскостью хОу. Можно также, как показал F. Jaffe (Annalen der Physik, 61, 1920, p, 173), обобщить эти результаты, чтобы легко получить уравнения, соответствующие случаю системы вихрей в жидкости, содержащейся между неподвижными стенками.  [c.103]

Анализ результатов траверсирования различными зондами объема камеры энергоразделения позволяет выделить следующие характерные особенности распределения параметров в вихревой трубе с дополнительным потоком. Как и в обычных разделительных вихревых трубах, работающих при ц 1, четко различаются два вихря — периферийный и приосевой, перемещающиеся в противоположных направлениях вдоль оси. Первый — от соплового сечения к дросселю, второй — в обратном направлении. Распределение параметров осредненного потока существенно неравномерно как по сечению, згак и по длине камеры энергоразделения. Радиальные градиенты статического давления и полной температуры уменьшаются от соплового сечения к дросселю, а их максимальные значения наблюдаются в сопловом сечении. Распределение тангенциальных и осевых компонент скорости качественно подобны для различных сечений, однако, количественно вдоль трубы они претерпевают изменения. Поверхность разделения вихрей в большей части вихревой зоны близка к цилиндрической, о чем свидетельствуют пересечения осевых скоростей для различных сечений примерно в одной точке оси абцисс Т= 0,8 (см. рис. 3.9 и 3.10). Это хорошо согласуется с результатами исследований вихревых труб с диффузорной камерой энер-горазцеления, работающих при ц < 0,8, и позволяет в составлении аналитических методик расчета вихревых труб с дополнительным потоком вводить допущение dr /dz = О, а радиус разделения вихрей Tj для этого класса труб считать равным примерно 0,8. Как и у обычных труб, интенсивность закрутки периферийного потока вдоль трубы снижается -> 0), а возвратное при-осевое течение формируется в основном из вводимых дополнительно масс газа, скорость которых на выходе из трубки подвода дополнительного потока имеет осевое направление. По мере продвижения к отверстию диафрагмы приосевые массы в процессе турбулентного энергомассообмена с периферийным вихрем приобретают окружную составляющую скорости. Затухание закрутки периферийных слоев происходит тем интенсивнее, чем больше относительная доля охлажденного потока. Опыты показывают, что прй оптимальном по энергетической эффективности  [c.112]


Течение газа в цилиндрическом канале сопровождается образованием структуры, состоящей из двух вращательно-поступательных потоков. По периферии движется потенциальный (первичный) вихрь. Центральную область занимает вторичный вихрь с квазитвердой закруткой, образующейся из масс газа, втекающих из окружающей среды. Вблизи оси поступательная составляющая скорости вторичного вихря имеет противоположное первичному направление. При некоторых условиях течение в вихревом генераторе звука (ВГЗ) теряет устойчивость, в результате чего возникают интенсивные пульсации скорости и давления, которые распространяются в окружающую среду в виде звуковых волн [96]. Источником звуковых волн при этом считается прецессия вторичного вихря относительно оси ВГЗ. Пульсации скорости и прецессию ядра наблюдали визуально в прозрачной трубке с помощью вводимого красителя [94]. При нестационарном режиме угол наклона винтообразной линии тока периодически менялся по величине точно в соответствии с углом поворота прецессирующего ядра.  [c.118]

Одной из основных геометрических характеристик вихревой трубы является радиус разделения вихрей г . Физико-математическая модель, построенная на гипотезе взаимодействия вихрей, позволяет рассчитывать величину на режимах, когда истечение из отверстия сопла-завихрителя соответствует критическому. Для докритических режимов истечения обычно принимают rj = г, [116]. Это весьма жесткое допушение, так как оно исключает возможность формирования свободного квазипотенциального закрученного потока в узкой кольцевой зоне, прилегающей к внутренней цилиндрической поверхности камеры энергоразделе-ния. Практически это означает полное отсутствие возможности взаимодействия вихрей, так как будет существовать лишь один приосевой вынужденный вихрь, вращающийся как квазитвердое тело. Устранить это внутреннее противоречие можно, если в математическую модель ввести оценку значения rj, основанную на законах сохранения массы, энергии и момента количества движения с учетом особенностей турбулентного характера течения. Рассмотрим модель вихревой трубы с тангенциальным вдувом газа через щель сопла на внутренней поверхности трубы радиусом  [c.188]

Характер воздействия массовых сил на поток зависит от взаимного направления угловых скоростей цилиндрических поверхностей и от величины этих скоростей. При неподвижном внешнем цилиндре окружная скорость жидкости в зазоре увеличивается от нуля на поверхности внешнего цилиндра до скорости вращения поверхности внутреннего цилиндра (рис. 8.9, а). В этом случае массовая сила и производная dFldn имеют противоположные направления и, следовательно, поле массовых сил оказывает активное воздействие на поток. В такой системе под влиянием массовых сил возникают вихри Тейлора, имеющие форму торов (рис. 8.10, а). Соседние вихри вращаются в противоположных направлениях.  [c.354]

Длинные центробежные волны. При стационарном потенциальном вращении жидкости, а также при поступательно-вращательном течении жидкость по трубе на свободной поверхности жидкости (которая, как было показано в предыдущем параграфе, предетавляет еобой цилиндрическую поверхность радиуса Гд, т. е. поверхность расположенного на оси газового вихря) могут под действием центробежных сил возникать и распространяться так называемые центробежные волны если длина этих волн велика по сравнению с радиусом трубы, их называют длинными центробежными волнами  [c.299]

Обтекание тел с затупленной кормовой частью (неудобообте-каемых тел), как правило, сопровождается отрывами. Кинематическая структура потока зависит от числа Рейнольдса и, если движение возникло из состояния покоя, от времени с начала движения. На рис. 8.29 показаны снятые на кинопленку последовательные стадии развития пограничного слоя и формирования вихрей при обтекании кормовой части цилиндрического тела потоком воды, начинающим движение из состояния покоя. В начальный момент пограничный слой почти отсутствует, и течение близко по структуре к потенциальному. В дальнейшем происходит нарастание пограничного слоя, его утолщение и, наконец, отрыв (рис. 8.29, 4). Оторвавшийся пограничный слой свертывается в крупный вихрь, оттесняющий поток от поверхности тела.  [c.350]

При обтекании круглого цилиндра потенциальным потоком благодаря симметричному распределению давлений по поверхности цилиндра результирующая этих сил равна нулю (парадокс Даламбера). Следовательно, для этого случая = 0. Можно доказать, что во всех случаях безотрывного обтекания цилиндрических тел потенциальным потоком сопротивление давления равно нулю. Однако при отрывном обтекании, когда за телом образуется мертвая зона или суперкавитационная каверна (см. п. 10.2), теория потенциальных течений дает не равное нулю значение силы сопротивления давления. Так, в п. 7.12 было доказано, что при струйном обтекании пластины, поставленной нормально к потоку (см. рис. 7.30), коэффициент лобового сопротивления, являющегося в данном случае сопротивлением давления, равен 0,88. Это подтверждается опытом только в тех случаях, когда за обтекаемым телом действительнсГобразуется зона, заполненная парами или газом, в которой давление приблизительно постоянно, как это предусмотрено теорией. Но в большинстве случаев за обтекаемым телом образуется так называемый гидродинамический след, представляющий собой область, заполненную крупными вихрями, которые, взаимодействуя и диффундируя, постепенно сливаются и теряют индивидуальность. На достаточном расстоянии от тела (дальний след) образуется непрерывное распределение дефекта скоростей в потоке, близкое к распределению скоростей в струнном пограничном слое. Наличие вихрей в гидродинамическом следе приводит к понижению давления на тыльной части поверхности тела и соответствующему увеличению сопротивления давления, которое часто называют также вихревым сопротивлением.  [c.391]

Рассмотрим процесс поперечного обтекания одиночной цилиндрической трубы потоком жидкости (рис. 17.7). Плавное обтекание цилиндра возможно только при малых скоростях потока — при Re < 5. При всех значениях Re > 5 наблюдается отрыв потока от стенки трубы и образование в кормовой части двух симметричных вихрей, которые с увеличением скорости потока вытягиваются по течению, удаляясь от трубы. Ламинарный пограничный слой, образующийся на лобовой части по обе стороны от точки О, ирн 5 < Re < 2-10 отрывается от поверхности трубы в точке а, характеризующейся углом ф 82° (рис. 17.7, а). Увеличение толщины пограничного слоя от минимального в точке О до максимального в точке отрыва а приводит к увеличению термического сопротивления и уменьшению коэффициента теплоотдачи а. Коэффициент а имеет максн.мальное значение в точке О, минимальное — в точке отрыва а. В кор.мовой части значения а вновь увеличиваются за счет разрушения пограничного слоя и образования вихрей, турбулизирующих поток. При значительных числах Рейнольдса (Re > 2-10 ) ламинарный пограничный слой переходит в турбулентный (точка Ь на рис. 17.7, б) и место отрыва от трубь перемещается по потоку (точка а). Это приводит к улучшению обтекания цилиндра (ср 120") и уменьшению вихревой зоны.  [c.191]


Изучению этого процесса посвящен ряд исследовательских работ, в большинстве которых изучены аналогичные процессы в цилиндрических и нецилиндрических трубах (24, 47, 48], приводящие к резкому нарушению циливдричности потока. В основном применительно к условиям существования потока в циливдрических трубах построена и работа [46], и в ней использованы зависимости, справедливые для цилиндрических потоков в трубах как до разрушения вихря, так и после него. Не рассматривая движений в неограниченной среде и правомерности переноса зависимостей, справедливых для цилиндрического потока в трубе, на вращающиеся струи в неограниченной среде, а также перехода в цилиндрических трубах к резко выраженному нецилнндрнческому потоку, условимся воспринимать теорию Бенджамина только как вариант теории цилиндрических течений в трубах.  [c.80]

Бенджамин вводит вариационный принцип экстремума полного импульса П, в соответствки с которым в устойчивом цилиндрическом потоке со свободной поверхностно всегда реализуется этот экстремум, а переход от неустойчивой формы течения к устойчивой или взрыв вихря" происходит без потерь энергии, но с увеличением импульса. В качестве аналога взрыва вихря он рассматривает волновой гидравлический прыжок в невращ ющемся патоке при числе Fi, близком к едини-80  [c.80]

Смазка через ряд отверстий, соединенных с центральным каналом, поступает в кольцевую полость, образуемую выточкой вихрителя и цилиндрической частью штуцера. Давлением смазки на буртик выточки вихрителя, превышающим силу прижатия его воздухом к торцу штуцера, вихритель сдвигается, и смазка подается к воздушной струе в виде пленки. Пленка подхватывается воздушным вихрем у входа в кольцевую щель и хорошо распыляется под действием центробежных сил в потоке смеси. Когда давление смазки на входе в форсунку падает, то давлением воздуха и пружины шарик нажимает на хвостовик плунжера, заставляя его двигаться. Тем самым перекрывается доступ смазки в центральный канал штуцера и только после этого прекращается подача воздуха.  [c.41]

Мультигидроциклон (рис. 4.6) практически избавлен от этих недостатков. Он состоит из двадцати отдельных гидроциклонов 7. Отделение механических частиц в гидроциклоне происходит под действием центробежных сил, возникающих при закручивании струи воды, входящей через отверстие 5 с определенной скоростью по касательной к цилиндрической его части. При этом частицы отбрасываются к стенке и через отверстие 8 в вершине конуса попадают в полость грязного слива. В центре вихря образуется зона очищенной жидкости, которая через патрубок 4 направляется в сборную камеру 3 чистой воды и далее в систему. Гидравлика потоков в гидроциклоне крайне сложна, что вызывает необходи-  [c.106]


Смотреть страницы где упоминается термин Вихрь цилиндрический : [c.103]    [c.202]    [c.252]    [c.385]   
Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.158 ]



ПОИСК



Вихрь

Вихрь конический цилиндрический

Движение вихрей в цилиндрических трубах

Динамическая теория цилиндрических вихрей

Общие условия для установившегося движения жидкости. Цилиндрические и сферические вихри

Перманентное движение, относящееся к двум цилиндрическим вихрям в неограниченной жидкости



© 2025 Mash-xxl.info Реклама на сайте