Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение вихрей в цилиндрических трубах

Существенно отметить, что ламинарное движение является вихревым. Чтобы убедиться в этом, найдем величину компонентов вихря Т1 и для этого движения. Для ламинарного потока в цилиндрической трубе  [c.159]

ДВИЖЕНИЕ ВИХРЕЙ В ЦИЛИНДРИЧЕСКИХ ТРУБАХ  [c.376]

При поступательно-вращательном течении жидкости по трубе имеются две области движения. Собственно жидкость течет в кольцевом зазоре, прилегающем к стенкам трубы и заключенном между радиусом трубы и радиусом вихря г.. Внутри этого кольцевого зазора жидкость движется вдоль трубы со скоростью w и вращается со скоростью о)ф, удовлетворяющей условию сохранения момента скорости. На оси трубы образуется цилиндрическая полость радиуса г.. В этой полости жидкости нет она или пуста, или заполнена воздухом (в том случае, когда труба сообщается с атмосферой) если учесть способность жидкостей испаряться, то будет ясно, что в этой полости будут находиться также пары жидкости. Заполняющие эту полость воздух или пары жидкости вращаются со скоростью, равной аг, т. е. как твердое тело по этой причине полость называют воздушным или паровым вихрем.  [c.296]


Движение с воздушным вихрем на оси трубы. Рассмотрим случай, когда внутренний вращающийся цилиндр отсутствует тогда на оси трубы образуется свободная от жидкости цилиндрическая полость радиуса Гд ( воздушный вихрь ).  [c.655]

Изучению этого процесса посвящен ряд исследовательских работ, в большинстве которых изучены аналогичные процессы в цилиндрических и нецилиндрических трубах (24, 47, 48], приводящие к резкому нарушению циливдричности потока. В основном применительно к условиям существования потока в циливдрических трубах построена и работа [46], и в ней использованы зависимости, справедливые для цилиндрических потоков в трубах как до разрушения вихря, так и после него. Не рассматривая движений в неограниченной среде и правомерности переноса зависимостей, справедливых для цилиндрического потока в трубе, на вращающиеся струи в неограниченной среде, а также перехода в цилиндрических трубах к резко выраженному нецилнндрнческому потоку, условимся воспринимать теорию Бенджамина только как вариант теории цилиндрических течений в трубах.  [c.80]

Как и в случае с безграничным течением (см. п. 5.2), найдем прежде всего бинормальную компоненту скорости движения вихря. Влияние стенок цилиндрической трубы на скорость вихря определим через значение скорости, индуцированной отраженным вихрем в точке, где находится центр вихря. В формулах (5.36), (5.44) это соответствует учету в величине Ско дополнительного члена Н  [c.385]

Собирая вклады всех факторов, влияющих на движение винтового вихря в цилиндрической трубе, запишем результирующую формулу для бинормальной скорости  [c.386]

Одной из основных геометрических характеристик вихревой трубы является радиус разделения вихрей г . Физико-математическая модель, построенная на гипотезе взаимодействия вихрей, позволяет рассчитывать величину на режимах, когда истечение из отверстия сопла-завихрителя соответствует критическому. Для докритических режимов истечения обычно принимают rj = г, [116]. Это весьма жесткое допушение, так как оно исключает возможность формирования свободного квазипотенциального закрученного потока в узкой кольцевой зоне, прилегающей к внутренней цилиндрической поверхности камеры энергоразделе-ния. Практически это означает полное отсутствие возможности взаимодействия вихрей, так как будет существовать лишь один приосевой вынужденный вихрь, вращающийся как квазитвердое тело. Устранить это внутреннее противоречие можно, если в математическую модель ввести оценку значения rj, основанную на законах сохранения массы, энергии и момента количества движения с учетом особенностей турбулентного характера течения. Рассмотрим модель вихревой трубы с тангенциальным вдувом газа через щель сопла на внутренней поверхности трубы радиусом  [c.188]


На рис. 8-Г1 изображена циклонная вихревая топка системы профессора Г. Ф. Кнорре, предназначенная для сжигания всевозможной топливной мелочи опилок, лузги, топливной крошки и т. п. К обычной топочной камере присоединяется вертикальная цилиндрическая кирпичная шахта 1, дно которой представляет собой кирпичный конус 2. Основной поток воздуха с начальной скоростью 20—25 м сек нагнетается вентилятором по трубе 8 в кольцевое пространство между корпусом и цилиндрической частью шахты через два канала 5 с выходами в канал 4. Такой способ подвода воздуха создает циклонное движение воздуха по шахте снизу вверх. При этом на периферии вихря создается зона повышенного давления, а в центре его — зона разрежения и, следовательно, частичной обратной циркуляции воздуха сверху вниз. Этот обратный поток, идущий по центру шахты, служит для подачи свежего топлива, которое поступает через верхний свод в циклон. Таким образом, поток топлива как бы засасывается обратным вихрем в глубину циклона и в нижней его части подхватывается двумя винтообразными потоками основного воздуха. Выход образующегося в результате возгонки топлива полугаза в топочную камеру осуществляется через диффузор, ось которого совпадает с осью дожигательной камеры. В этот поток полугаза вводится остальная часть воздуха в качестве вторичного.  [c.161]


Смотреть страницы где упоминается термин Движение вихрей в цилиндрических трубах : [c.384]   
Смотреть главы в:

Введение в теорию концентрированных вихрей  -> Движение вихрей в цилиндрических трубах



ПОИСК



Вихрей движение

Вихрь

Вихрь цилиндрический

Труба цилиндрическая



© 2025 Mash-xxl.info Реклама на сайте