Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение в на растяжение (сжатие)

В профильной проекции ребрам следует придавать наиболее простые формы. Вогнутые ребра (вид 3) нецелесообразны по прочности при работе на изгиб и растяжение в них возникают высокие напряжения, пропорциональные степени вогнутости. Ребра выпуклого профиля (вид 4) некрасивы и утяжеляют деталь. Лучше всего применять прямолинейные ребра (вид 5), наиболее прочные при работе на растяжение-сжатие и изгиб.  [c.88]


Здесь имеется в виду допускаемое напряжение или на растяжение, или на сжатие в зависимости от того, с каким случаем мы имеем дело — с растяжением или сжатием.  [c.50]

Две одинаковые детали работают на растяжение-сжатие при различных циклах изменения напряжений в опасном сечении первой детали a ,=60 МПа, а ==40 МПа, то же второй - а 2 = МПа, = -40 МПа. Какая деталь работает с большим коэффициентом запаса прочности  [c.222]

Распространяя гипотезу Ньютона о пропорциональности напряжений скоростям деформаций на нормальные напряжения и деформации растяжения (сжатия), следует иметь в виду, что растяжение жидкой частицы сопровождается ее поперечным сжатием, т. е. объемной деформацией иначе говоря, деформация в направлении любой оси вызывается напряжениями, как параллельными этой оси, так и перпендикулярными к ней.  [c.66]

Балка загружена равномерно распределенной нагрузкой q = mfM и двумя сосредоточенными силами Р=20т, приложенными в равных расстояниях от опор по а = 0,2 м (см. рисунок). Пролет балки 1 = 2 м. Допускаемые напряжения принять на растяжение и сжатие [сг] = 1600 к г/сл, на срез [т] = 1050 лгг/сл. Сечение балки можно схематизировать, рассматривая его состоящим из прямоугольников (рис. 6).  [c.143]

Один из теоретических вопросов должен быть достаточно серьезным, т. е. содержать какой-либо вывод, например нормальные напряжения в поперечном сечении бруса при его чистом изгибе (вывод формулы), или охватывать более или менее самостоятельную часть темы, например расчет на растяжение (сжатие) бруса, жестко защемленного обоими концами, раскрытие статиче-  [c.40]

II. По виду напряженного состояния а) испытания на растяжение, сжатие, изгиб, кручение, срез б) испытания в условиях сложного напряженного состояния.  [c.48]

Мы рассмотрели расчет динамических напряжений в случае ударного сжатия. Однако все приведенные формулы будут также справедливы и для ударного растяжения, в частности для случая, показанного на рис. 605.  [c.697]

Мы рассмотрели испытание при симметричном цикле. Образцы в условиях несимметричных циклов испытывают обычно не на изгиб, а на растяжение - сжатие или на кручение специальными машинами - гидропульсаторами. Но не исключено также и применение простейших приспособлений. Так, можно на испытуемом образце установить пружину, создающую постоянное растяжение образца с напряжением ащ (рис. 12.12). Во время испытания на это напряжение накладывается напряжение изгиба, меняющееся по симметричному циклу.  [c.481]


Изображаем опасное сечение (рис. IX. 12), направления М , Му и М , в котором, если материал участка одинаково работает на растяжение-сжатие, при расчете на совместное действие изгиба и кручения, не имеют значения. Выписываем (см. У.17) в общем виде уравнение нормальных напряжений при косом изгибе  [c.315]

Крестовины рассчитывают также на изгиб по меридианному наиболее ослабленному сечению. Шток проверяют при полном усилии сервомотора на растяжение-сжатие и, если требуется, на продольный изгиб. Штоки куют из стали 30 или 35. Расчетные напряжения обычно принимают меньше допустимых (150 МПа) в целях обеспечения достаточной жесткости и из конструктивных соображений.  [c.174]

При расчете на растяжение (сжатие) деталей, изготовленных из пластичного материала, при статическом нагружении в качестве опасного обычно принимают напряжение, равное пределу текучести От. Для деталей, изготовленных из хрупких материалов (чугун, высокоуглеродистые закаленные стали и т. д.) в качестве опасного напряжения принимают предел прочности а .  [c.137]

Расчет сварных швов при статическом нагружении. Материал сварного шва работает на растяжение (сжатие) в стыковых швах, либо на срез в угловых, тавровых и швах внахлестку. На прочность сварных швов оказывает влияние концентрация напряжений в местах усиления швов, нарушающая плавность силового потока, что учитывается при выборе допускаемых напряжений. Расчет на прочность стыкового шва (см. рис. 4.2, а) производится по формуле  [c.403]

Оказалось, что наиболее ярко влияние второй компоненты нагружения на достижение предельного состояния выражено в размере зоны статического проскальзывания в момент перегрузки. Если в области двухосного растяжения имело место монотонное убывание зоны проскальзывания, с ее исчезновением при соотношении главных напряжений -1,0, то в области растяжения-сжатия имело место немонотонное изменение размеров указанной зоны. Сначала ее размер убывал при увеличении второго напряжения сжатия, а далее происходило вновь нарастание размера зоны статического проскальзывания. Изложенные результаты эксперимента свидетельствуют о синергетической ситуации в вершине трещины, когда в момент перехода к статическому проскальзыванию при монотонном увеличении раскрытия вершины трещины могут одновременно участвовать в процессе два фактора, оказывающих влияние друг на друга.  [c.111]

Экспериментальная проверка (1.1.12) для однородного напряженного состояния, проведенная на ряде конструкционных материалов, испытанных на растяжение — сжатие при мягком и жестком нагружениях с различной асимметрией, показала вполне удовлетворительное соответствие расчета по уравнению (1.1.12) и эксперимента (рис. 1.1.11). Максимальное отклонение расчетных долговечностей при этом не превышает двукратного в большую или меньшую сторону по числу циклов, что находится в пределах разброса экспериментальных данных.  [c.16]

При выборе способа нагружения существенным с методической точки зрения является использование метода, позво.ляющего осуществлять однородное напряженное и деформированное состояние в исследуемом образце. Наибольшее распространение получили испытания на растяжение — сжатие, а также на кручение тонкостенных трубчатых образцов, когда в последнем случае неоднородностью напряженного состояния по радиусу можно пренебречь.  [c.213]

На рис. 2 представлено изменение коэффициентов фд, фр, ф отношения Eg амплитудных значений напряжения и деформации и отношения pg амплитудных значений поперечной и продольной деформации в зависимости от числа циклов при амплитуде напряжения (Та = 199 МПа. Исследована сталь 45 при нагружении в условиях растяжения — сжатия с коэффициентом асимметрии цикла Н =  [c.22]

Экспериментальные данные о влиянии скорости деформации на сопротивление деформированию в волнах разгрузки, проявляющейся в связи силовых и временных параметров откольной прочности материала, позволяют расширить диапазон скоростей деформирования. Для анализа результатов необходимо принять определенную модель процесса разрушения с соответствующими критериями разрушения, позволяющую связать влияние скорости деформации на сопротивление деформации при одноосном напряженном состоянии в испытаниях на растяжение — сжатие (или двухосном напряженном состоянии в испытаниях на чистый сдвиг) с влиянием скорости нагружения в области растягивающих напряжений на откольную прочность при одноосной деформации в плоских волнах нагрузки.  [c.242]


Инерционный принцип возбуждения, рассмотренный выше, может быть использован и для испытаний на растяжение—сжатие, однакО необходимость воспроизведения при этом значительно больших, чем при неоднородном напряженном состоянии, нагрузок препятствует его распространению. Увеличение нагрузок может быть достигнуто увеличением неуравновешенных масс или скорости их вращения. Первый путь ведет к нежелательному росту габаритов и веса установки, второй — может отрицательно сказаться на устойчивости режима испытаний в связи с при-  [c.136]

Машина МУБ-5 предназначена для усталостных испытаний на растяжение — сжатие образцов диаметром 8—10 мм при мо-но- и бигармоническом изменении напряжений. В последнем случае соотношение частот суммируемых гармоник может быть следующим 2 1 3 1 4 1 и 10 1 при частоте высшей гармоники 2000, 1000 или 660 циклов в минуту. На этой машине можно проводить усталостные испытания при симметричном и асимметричном циклах с суммарной максимальной нагрузкой до 5000 дан и амплитудой до 2500 дан. Схема машины представлена на рис. 81.  [c.137]

Машины на растяжение-сжатие осуществляют циклы напряжений как одинаковых, так и разных знаков. В старых конструкциях [3, 31, 32/1] нагружение образцов чаще всего производилось посредством кривошипных механизмов, применение которых вследствие инерции масс возможно лишь при ограниченных частотах (в интервале 5—15 гц). В современных конструкциях инерция масс используется для нагружения образцов, что позволяет развивать частоты до 50 гц и более.  [c.76]

Расчет тонкостенного стержня на растяжение (сжатие), изгиб и свободное кручение делается по правилам, изложенным в гл. II, причем нормальные напряжения зависят только от усилии N, М а касательные только от Q ,  [c.174]

Тонкостенные стержни на растяжение (сжатие), изгиб и свободное кручение рассчитываются по правилам, изложенным в гл. П, причем нормальные напряжения зависят только от усилий N, Л ., М ,  [c.137]

Как видно из предыдущего, деление на напряжения первого, второго и третьего родов является условным. Все они тесно переплетаются друг с другом и могут быть местными, зональными и общими. Для практических целей существенно, что внутренние напряжения могут действовать разупрочняюще и упрочняюще. Опасны напряжения того же знака, что и рабочие, например разрывающие напряжения в случае растяжения. Благоприятны напряжения, знак которых противоположен знаку рабочих, например сжатия в случае растяжения. Следует отметить, что внутренние напряжения одного знака всегда сопровождаются Появле нием в смежных объемах уравновешивающих напряжений противоположного знака относительная величина напряжений разного знака зависит от протяженности охватываемых ими объемов. Таким образом, опреде-ляющихг для прочности является, во-первых, расположение и ориентация напряженных объемов относительно действующих рабочих напряжений и, во-вторых, величина внутренних напряжений, одноименных и одинаково направленных с рабочими напряжениями. Неоднородности, создающие очаги повышенных разрывающих напряжений, нарушающие сплошность металла, вызывающие появление трещин и облегчающие местные пластические сдвиги, являются дефектами металла. Неоднородности, создающие общирные зоны сжимающих напряжений, способствующие уплотнению металла и препятствующие возникновению и распространению пластических сдвигов, являются упрочняющими факторами.  [c.153]

Повышенная жесткость деталей, работающих на растяжение-сжатие, в конечном итоге обусловлена лучшим использованием материала при этом виде нагружения. В случае изгиба и кручения нагружены преимущественно крайние волокна сечения. Предел нагружения наступает, когда напряжения в них достигают опасных значений, тогда как сердцевина остается недогруженной. При растяжении-сжатии напряжения одинаковы по всему сечению материал используется полностью. Предел нагружения наступает, когда напряжения во всех точках сечения теоретически одновременно достигают опасного значения. Кроме того, при растяжении-сжатии деформации детали пропорциональны первой степени ее длины. В случае же изгиба действие нагрузки зависит от расстояния между плоскостью действия изгибающей силы и опасным сечением деформации здееь пропорциональны третьей степени длины.  [c.215]

Для определения прочности при статических HaqjysKax образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытание на растяжение - самый распространенный и экономичный вид испытаний, потому что он дает хорошо воспроизводящиеся характеристики, имеющие четкий физический смысл и воспроизводит условия нагружения металла аппарата, работающего под внутренним давлением. Однородное одноосное напряженное состояние, реализуемое на начальных стадиях испытания, позволяет прямо сравнивать достигнутые напряжения с расчетными напряжениями в конструкциях.  [c.278]

В результате испытаний на растяжение (сжатие) получают диаграмму, отражающую зависимость между напряжением а и деформацией е. Типичная диаграмма напряжений при растяжении образца из низкоуглеродистой стали приведена на рис. 13. При построении таких диаграмм напряжения в поперечном сечении образца подсчитывают исходя из первоначальной площади этого сечения. Поэтому эти диаграммы называют условньши характеристиками материала.  [c.190]

Конечно, дело не в том, рассматривать ли подлежащие изучению вопросы как отдельную тему или как составную часть темы Изгиб . Важно показать учащимся, что знаний, полученных ими при изучении растяжения-сжатия и прямого изгиба, достаточно для выполнения расчетов на косой изгиб и сочетание изгиба и растяжения (сжатия). Не надо создавать у учащихся впечатления, что изучаются какие-то новые теоретические вопросы просто им даются практические рекомендации по применению принципа независимости действия сил к некоторым частным задачам сопротивления материалов. Надо постараться затратить минимум времени на эти рекомендации, а большую его часть посвятить решению задач. Неоднократно пробовали в виде эксперимента, не излагая данной темы и не давая никаких разъяснений, предлагать учащимся задачи на косой изгиб и на растяжение (сжатие) с изгибом. Сильные и даже средние учащиеся справлялись с этими задачами, хотя в отдельных случаях и требовалась небольшая подсказка, например Примените принцип независимости действи я сил , или Следите при суммировании за знаками напряжений , или Попытайтесь представить, какой характер деформирования бруса соответствует каждому из внутренних силовых факторов .  [c.139]


Для балок из хрупкого материала полученные рекомендации теряют силу, так как у него допускаемое напряжение на растяжение [а + ] значительно меньше допускаемого напряжения на сжатие [а ]. В этом случае нецелесообразно применять сечения, нейтральная линия которых является осью симметрии сечения и, следовательно, максимальные напряжения в растянутой и сжатой зонах одинаковы. Рационально такое сечение, у которого а акс в растянутой ЗОН0 значительно меньше (Тмакс  [c.281]

В подавл 1ющем большинстве конструкций реализуется сложное напряженное состояние, которое в каждой точке характеризуется тремя главными напряжениями а , 0 ,0з. Определим, при каком сочетании этих напряжений произойдет разрушение. Для решения этой задачи было проведено большое количество исследований, но полного решения пока не имеется. Одной из причин такого положения является то, что в реальных условиях возможно выполнение преимушественно лишь экспериментов на растяжение—сжатие. На базе этих данных нужно суметь построить критерий прочности для сложного напряженного состояния. Решению этой задачи помогают гипотезы прочности, подлежащие последующей экспериментальной проверке, после чего появляется возможность сформулировать соответствующие критерии прочности. Ввиду сложности задачи и большого разнообразия как свойств материалов, так и условий эксплуатации изделий этих критериев выработано несколько. Применение этих критериев должно соответствовать их назначению и границам достоверности. Ниже описаны основные критерии прочности.  [c.161]

Таким образом, особенность поведе-ння при деформировании на растяжение-сжатие идеализированной модели материала 4D, учитывающей только соосную волокнам жесткость, состомт в том, что деформация ее во всех направлениях одинакова н напряжения задаются гидростатическим тензором.  [c.80]

Из ЭТИХ десяти коэффициентов величины Fi, Fa, Fu, F22 и Fee можно определить непосредственно из испытаний композита на растяжение, сжатие и сдвиг, подобно испытаниям слоя в раз. 4.4.4. Остальные компоненты F12, Fn2, F122, F266, lee тензоров прочности уравнения (4.32) характеризуют независимые взаимодействия между различными компонентами напряжения. Чтобы быть уверенным в том, что присущий композиционным материалам разброс свойств не вносит погрешность в вычисление этих коэффициентов, они должны определяться при заданных заранее оптимальных отношениях  [c.160]

Были продолжены эксперименты на стали Х18Н10Т в условиях растяжения — сжатия при 650° С нагрев корсетных сплошных образцов производился пропусканием тока [79]. Использована испытательная машина УМЭ-10Т [149]. Жесткость машины с образцом для случая упругого деформирования составила 5000 кгс/мм. При испытаниях осуществлялась непрерывная запись диаграмм напряжение — поперечная деформация. Выполнялось  [c.27]

Теоретическое исследование нераспространяющихся усталостных трещин может быть проведено на основе анализа амплитуд истинных напряжений, действующих в вершине трещины, и условий достижения этими амплитудами критического значения с учетом влияния скорости нагр жения и температуры. Будет ли дальше распространяться возникшая и развившаяся на некоторую глубину усталостная трещина в вершине надреза при дальнейшем увеличении числа циклов нагружения, зависит от того, превышает или нет амплитуда истинного напряжения в зоне у вершины трещины критический предел прочности материала [21. Если амплитуда истинного напряжения у вершины трещины превышает критическое напряжение, то в рассматри-ваемой зоне возникает новая усталостная трещина. Если же критическое напряжение достигнуто не будет, то дальнейшего развития трещины не произойдет и такая трещина станет нерас-пространяющейся. Это предположение основано на экспериментах, в которых было показано, что пределы выносливости образцов с развившейся на некоторую глубину трещиной при испытании на растяжение-сжатие практически не зависят от номинального среднего напряжения цикла, а зависят только от амплитуды номинального напряжения.  [c.58]

Результаты исследований И. А. Одинга и его сотрудников были подтверждены работами [76—78]. В них исследовалось влияние предварительного циклического деформирования на прочность и пластичность технического железа и сталей Ст. Зкп и 38ХА методом осциллографирования на копре ПСВО-1000. Образцы имели цилиндрическую форму диаметром 11 мм с нормальным надрезом (радиус 1 мм, глубина 2 мм). Циклическое нагружение выполнялось на растяжение— сжатие с частотой 20 000 Гц при амплитудах напряжений от 0,91 до 1,26 0-1. Критическая температура хрупкости определялась по величине ударной вязкости а =4 кгс-м/см . Наиболее чувствительной к усталости оказалась малоуглеродистая ст-аль кипящей плавки, критическая температура хрупкости которой под влиянием усталости повысилась на 60°С (с —10 до -]-50°С). Критическая температура хрупкости отожженного технического железа и стали 38ХА улучшенной повысилась на 30°С. При этом для исследованных сталей были установлены некоторые закономерности влияния усталости на температурную зависимость ударной вязкости.  [c.50]

Приведенный ниже расчетный метод не ограничивается двухступенчатой нагрузкой циклического изгиба, а распространяется также на многоступенчатую и случайную нагрузки в областях растяжение — сжатие и пульсирующего растяжения, а также при изгибающей и скручивающей нагрузках. В соответствии с имеющимися результатами данный метод применяется пока для материалов, которые во время циклического нагружения преимущественно разу-прочняются. Однако исследования показывают, что модификацией предложенного метода вслед за разупрочнением можно моделировать фазу упрочнения или распространения трещины, если этого требует усталостная характеристика материала. Для описываемого расчетного метода вводятся следующие обозначения и условности (рис. 2) а или о — отмеченная величина напряжения и координата напряжения точки пересечения кривых о — N Oaj — амплитуда напряжения Дй ступени нагружения От — среднее напряжение Oj — верхняя величина напряжения -й ступени нагружения, где Gj — От + Oaf, Oo,i — входящая в г-ю кривую о — N действительная усталостная прочность, причем i = О обозначает исходную кривую усталости, а i > О — вторичные кривые усталости  [c.317]

Таким образом, построение определяющих уравнений состояния требует установления функциональной связи между процессами нагружения и деформирования с учетом истории нагружения и основано на экспериментальном исследовании связи процессов нагружения и деформирования при одном напряженном состоянии (растяжение, сжатие или сдвиг) связи и нттс и в и о сте й напряжений и деформаций с учетом влияния уровня средних напряжений " анизотроми уТГр чн Ш Я зявистг-мости от пути предшествующего нагружения (см. рис. 1). Связь процессов нагружения и деформирования наиболее надежно определяется по результатам квазистатических испытаний, как правило, на растяжение — сжатие или кручение (сдвиг) путем сопоставления мгновенных значений напряжений и деформаций, характеризующих состояние определенного объема материала.  [c.12]


Л/ при разных случаям эпюры нормальных напряжений и + в сечениях 2 = 0, (/4 и //2. Такого же эффекта можно добиться, развивая силы, передаваемые на торцы бетонной балки при помощи натяжения арматуры, помещенной в канал, созданный в балке при ее изготовлении. Достигнуть этого можно так. Перед бетонированием балки поместить в опалубку (в форму) трубки из жести и в них с некоторым зазором расположить арматуру, например, высокопрочные тросы. Затем забетонировать балку и дать бетону отвердеть и приобрести необходимую прочность. В теле бетонной балки при этом образуются каналы, внутренняя поверхность которых пред- ставляет собой внутреннюю поверхность уложенных жестяных трубок. Арматура, находящаяся в этих каналах, не имеет сцепления с бетоном. Если один конец каждого арматурного стержня снабдить упорным устройством, а другой— домкратом, упирающимся в торец бетонной балки (рис. 13.32), то при помощи домкрата будет создано напряжение в конструкции — растяжение в арматуре и сжатие в бетоне.  [c.310]

Промежуточные пики напряжений, которые по своей величине меньше предела выносливости, могут вызывать и повреждающее действие. Например, при испытании латунных образцов на растяжение—сжатие с воспроизвеХрнием формы цикла, изображенной на рис. 76, е, пики Оз и 04 оказывали разупрочияющее действие даже в том случае, когда они составляли 60—70% предела выносливости [18].  [c.126]

Инерционный принцип силовозбуждения, примененный в указанной выше машине для испытаний при неоднородном напряженном состоянии, был использован также для нагружения образцов осевыми усилиями (растяжение—сжатие) [ 5]. Так как при испытаниях на растяжение—сжатие необходимо воспроизведение значительных усилий (в рассматриваемой установке до 4000 дан), скорость вращения неуравновешенных масс была выбрана значительной — 2500—3600 об1мин для основной гармоники и 6100—7500 об1мин для высокочастотной (мг i = 2 1 и 3 1). При этом высокочастотная составляющая оказалась в резонансной области, так как частота собственных колебаний упругой системы машины составляла 6050—6100 циклов в минуту. Такое явление неблагоприятно сказывается на стабильности режима нагружения образца как в ироцеесе испытаний, так и в особенности при переходе через резонанс. В связи с этим большое (внимание авторы вынуждены бьши уделить вопросам исследования динамических характеристик машины и стабилизации амплитуды напряжений.  [c.128]

Для определения напряженно-деформированного состояния многослойной стенки сварного сосуда, вызванного как внутренним давлением, так и воздействием сосредоточенных, импульсных, ветровых, сейсмических, кратковременных большой интенсивности и динамических сил работающих машин, необходимо учитывать влияние контактного давления между слоями на контактную податливость и из-гибную жесткость. Определению зависимости давление — контактная податливость, а также напряжений в многослойном цилиндре с учетом особенности контакта слоев посвяш,ено множество исследований. Работы по определению зависимости контактное давление — изгибная жесткость нам не известны, В тех случаях, когда элементы конструкции направлены не только на растяжение — сжатие, но и на изгиб, необходим пространственный расчет и соответственно установление зависимости контактное давление — изгибная жесткость. Примером таких конструкций могут служить сосуды высокого давления для химического и нефтехимического производств, 2 многослойном исполнении  [c.360]


Смотреть страницы где упоминается термин Напряжение в на растяжение (сжатие) : [c.21]    [c.679]    [c.630]    [c.436]    [c.63]    [c.67]    [c.346]    [c.211]   
Сопротивление материалов 1986 (1986) -- [ c.127 , c.128 ]



ПОИСК



621 — Крепление растяжения-сжатия — Напряжения, допускаемые при кручени

931 — Крепление 933 Характеристики и энергия растяжения-сжатия Жесткость 925 — Напряжения допускаемые

Внутренние силы и напряжения, возникающие в поперечных сечениях бруса при растяжении и сжатии

Внутренние силы и напряжения, возникающие в поперечных сечениях стержня при растяжении - сжатии

Внутренние силы при растяжении и сжатии. Нормальные напряжения в поперечном сечении бруса

Внутренние силы, напряжения и деформации при растяжении и сжатии

Гипотеза плоских сечений при растяжении— сжатии стержня. Напряжения

Двухосное растяжение и сжатие. Круг напряжений

Диаграмма напряжений-деформаций для различных материалов при растяжении и сжатии

Допускаемое напряжение и коэффициент запаса прочности при растяжении и сжатии

Допускаемые напряжения и коэффициенты запаса прочности Расчеты на прочность при растяжении (сжатии)

Допускаемые напряжения на растяжение и сжатие для различных материалов

Изгиб и растяжение. Нормальное напряжение при внецентренном растяжении или сжатии

Испытание на растяжение с переходом сжатие через нулевое значение напряжения. Tension test through zero stress

Концентрация напряжений при растяжении, сжатии

Коэффициент асимметрии. — Материалы снижения допускаемого напряжения для пружин винтовых цилиндрических растяжения-сжатия

Механические характеристики. Допускаемые напряжения Расчетные формулы при растяжении (сжатии)

Мэллока на осевую деформацию стержня с переходом через нулевое напряжение от растяжения к сжатию. Axial test from tension

НАПРЯЖЕНИЯ - ОВАЛЬНОСТЬ растяжения-сжатия касательны

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ В СТЕРЖНЯХ, ПЛАСТИНКАХ И ОБОЛОЧКАХ Растяжение и сжатие стержней

Напряжение в наклонных (косых) сечениях при одноосном растяжении (сжатии). Закон парности касательных напряжений

Напряжение в наклонных сечениях растяжении и сжатии

Напряжение допускаемое на растяжение (сжатие)

Напряжение и деформации при растяжении и сжатии. Закон Гука. Понятие о допускаемом напряжении. Три рода задач

Напряжение нормальное (сжатие или растяжение)

Напряжение при внецентренном растяжении и сжатии

Напряжения в арке при равномерном растяжении (сжатии) по двум взаимно перпендикулярным

Напряжения в косых сечениях при двухосном растяжении (сжатии)

Напряжения в наклонных сечениях при одноосном растяжении (сжатии)

Напряжения в наклонных сечениях при осевом растяжении или сжатии

Напряжения в наклонных сечениях при растяжении (сжав одном направлении

Напряжения в наклонных сечениях при растяжении (сжатии) в двух направлениях

Напряжения в наклонных сечениях при растяжении (сжатии) в одном направлении

Напряжения в наклонных сечениях при растяжении (сжатии) по двум взаимно перпендикулярным направлениям

Напряжения в непоперечных сечениях бруса при центральном растяжении-сжатии

Напряжения в плоскостях наклонных сечений при осевом растяжении или сжатии . . — Расчет тонкостенных резервуаров

Напряжения в сечениях, наклоненных к оси стержня, при растяжении и сжатии

Напряжения для пружин витых растяжения сжатия

Напряжения допускаемые для пружин витых растяжения сжатия

Напряжения и деформации при растяжении и сжатии в пределах упругости. Подбор сечений

Напряжения и деформации при растяжении и сжатии призматических стержней

Напряжения и деформации при растяжении и сжатии. Закон Гука

Напряжения и деформации при растяжении или сжатии пластины по двум взаимно перпендикулярным осям

Напряжения и деформации при растяжении — сжатии

Напряжения и продольная деформация при растяжении и сжатии

Напряжения нормальные 262 Расчет при растяжении (сжатии)

Напряжения по наклонным сечениям при осевом растяжении или сжатии (линейное напряженное состояние)

Напряжения по наклонным сечениям при простом растяжении и сжатии

Напряжения растяжения

Напряжения сжатия

Напряжения сжатия (растяжения) в трубопроводе

ОСНОВЫ РАСЧЕТА НА ПРОЧНОСТЬ Внутренние силы и напряжении. Растяжение и сжатие

ОТДЕЛ II СЛОЖНЫЕ СЛУЧАИ РАСТЯЖЕНИЯ И СЖАТИЯ Расчет статически неопределимых систем по допускаемым напряжениям

ОТДЕЛИ СЛОЖНЫЕ СЛУЧАИ РАСТЯЖЕНИЯ И СЖАТИЯ Расчёт статически неопределимых систем по допускаемым напряжениям

Определение напряжений в наклонных сечениях при растяжении (сжатии) в двух направлениях

Определение напряжений в случае осевого растяжения или сжатия. Проверка прочности

Определение напряжений и деформаций при растяжении (сжатии)

ПРУЖИНЫ - РАЗМЕР цилиндрические растяжения-сжатия— Напряжения допускаемые

Пластины неограниченные — Напряжения — Расчет прямоугольные с отверстием Растяжение-сжатие — Коэффициент

Пружины цилиндрические винтовые растяжения-сжатия заневоленные — Напряжения остаточные 69, 70 — Обжатие пластическое 71 — Расчет

Разрушающие напряжения на растяжение, сжатие и сдвиг

Растяжение (или сжатие) 199 — Напряжения допускаемые — Выбор

Растяжение (сжатие)

Растяжение а сжатие Усилия и напряжения в поперечных сечениях бруса

Растяжение и сжатие Механические характеристики материалов Напряжения и деформации при растяжении и сжатии. Расчет на прочность и жесткость

Растяжение и сжатие прямого бруса Продольные силы. Напряжения в поперечных сечениях бруса Эпюры продольных сил и нормальных напряжений

Расчет статически неопределимых конструкций при растяжении и сжатии по допускаемым напряжениям

Расчетное уравнение и допускаемое напряжение при растяжении и сжатии

Расчеты на прочность при растяжении и сжатии Расчет по допускаемым напряжениям

Сжатие, опыты при одноосном растяжении нулевое значение напряжения. Compression, axial test in tension through zero

Схема 15. Вывод формулы для определения напряжений в поперечных сечениях при центральном растяжении — сжатии

Экспериментальное изучение растяжения и сжатия различных материалов и основы выбора допускаемых напряжений



© 2025 Mash-xxl.info Реклама на сайте