Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород, вязкость температурах

Кривые зависимости относительного сужения и ударной вязкости от суммарного содержания серы и кислорода при температуре 900° приведены на рис. 3.  [c.188]

При нагреве металла в интервале температур 100—500° С (участок старения) его структура в процессе сварки пе претерпевает видимых изменений. Однако в некоторых сталях, содержащих повышенное количество кислорода и азота (обычно кипящих), их нагрев при температурах 150—350° С сопровождается резким снижением ударной вязкости и сопротивляемости разрушению.  [c.212]


При температуре 72 = 93,51 К динамический коэффициент вязкости кислорода х = 171,5-1Q- Па-с, теплоемкость с р = 1,637 кДж/(кгХ ХК), теплопроводность V = 0,171 Вт/(м-К). Следовательно, для кислорода число Рейнольдса  [c.418]

Из данных таблицы видно также, что глубина диффузионного слоя увеличивается в процессе испытаний больше всего у образцов с покрытием № 77. Это объясняется малой вязкостью слоя покрытия, особенно при температуре 800° С. Более тугоплавкое из трех испытанных составов покрытие № 58 эффективнее защищает сплавы титана от окисления кислородом воздуха.  [c.156]

Sn, Повышение содержания кислорода незначительно влияет на чувствительность к надрезу (оцениваемую величиной а"/ав) при 298 и 77К. Однако вредное влияние кислорода в количестве >0,12 % (по массе) проявляется при 20 К. Очевидно, также, что высокое содержание железа отрицательно сказывается на чувствительности к надрезу как при комнатной, так и при низких температурах. Исходя из этих данных, можно сделать вывод, что сплав Ti—5А1—2,5Sn с низким содержанием кислорода и железа, обозначаемый в дальнейшем дополнительно ELI (повышенной чистоты), обладает значительно более высокой вязкостью надрезанных образцов при 20 К.  [c.279]

Вязкость с повышением температуры уменьшается, а сила предельного диффузионного тока, как это видно из перечисленных выше факторов, увеличивается. С повышением температуры электролита толщина диффузионного слоя увеличивается, но очень мало —0,19% на ГС. Такой вывод на первый взгляд кажется несколько неожиданным. Однако из анализа уравнения (Г20) следует, что толщина диффузионного слоя зависит от коэффициента диффузии в большей степени, чем от вязкости коэффициент диффузии входит в степени Гз, а вязкость — в степени Ге- А так как коэффициент диффузии с повышением температуры увеличивается, толщина диффузионного слоя на вращающемся дисковом электроде с повышением температуры также несколько увеличивается (в 1,1 раза) при изменении температуры с 20° до 80° С) [1,12]. Ввиду того, что растворимость кислорода с повышением температуры до 100° С уменьшается, величина предельного диффузионного тока при восстановлении кислорода как до перекиси водорода (п = 2), так и до воды (п = 4) на медном амальгамированном вращающемся электроде с повышением температуры достигает максимума (табл. ГЗ).  [c.27]

Это происходит вследствие уменьшения растворимости кислорода с повышением температуры, которая оказывает на величину предельного диффузионного тока большее влияние, чем увеличение коэффициента диффузии и уменьшение вязкости. Толщина же диффузионного слоя с повышением температуры несколько увеличивается.  [c.28]


Стабильность смазочного масла против окисления. Смазочное масло при работе в двигателях, агрегатах и узлах трения окисляется кислородом воздуха, в результате чего изменяется состав масла, в нем появляются новые вещества (смолы, органические кислоты и т. п.). Изменяются физико-химические свойства масла, в частности, увеличивается вязкость, повышается кислотное число и т. п. Появляется необходимость оценивать термоокислительную стабильность моторных масел, т е. их способность образовывать лаковые пленки на деталях двигателя при определенных температурах окисления.  [c.40]

Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]

Вязкость кислорода при различных температурах и давлениях, ц10 г см-сек (пуазы)  [c.344]

Литые слитки приходится обрабатывать с целью облагораживания структуры и измельчения крупного зерна. Подобная первоначальная обработка, повышающая удлинение и вязкость, осуществляется путем выдавливания в холодном и горячем состояниях, ковки, прокатки и обработки на ротационно-ковочной машине. Отжиг при температуре 510° с последующим медленным охлаждением способствует размягчению более тяжелых редкоземельных металлов, но оказывает слабое влияние на легкие металлы. Отжиг и обработка давлением при повышенных температурах требуют защитных контейнеров или инертной атмосферы для предотвращения коррозии. При высоких температурах все редкоземельные металлы обладают большим сродством к кислороду, водороду н прочим активным газам.  [c.604]

При вводе ферротитана в жидкую ванну газовая фаза играет существенную роль в окислении титана. Кислород печной атмосферы переносится через слой шлака окислами титана. Факторами, увеличивающими скорость передачи кислорода через шлак, являются увеличение концентрации окислов титана в шлаке, повышение температуры ванны, снижение вязкости и основности шлака. Все это увеличивает угар титана. Кремнезем по отношению к титану является окислителем.  [c.141]

Кислород и азот растворяются в ничтожно малом количестве и загрязняют сталь неметаллическими включениями (оксидами, нитридами, газовой фазой). Они оказывают отрицательное воздействие на свойства, вызывая анизотропию механических свойств, повышение хрупкости и порога хладноломкости, а также снижают вязкость и выносливость. Содержание кислорода более 0,03% вызывает старение сталей, а более 0,1% — красноломкость. Азот увеличивает прочность и твердость стали, но снижает пластичность. Повышенное содержание азота вызывает деформационное старение. Старение медленно развивается при комнатной температуре и ускоряется при нагреве до 250°С.  [c.153]

Воздействию низких температур подвергаются очень многие материалы и изделия, например трубы для газо- и нефтепродуктов, мосты, железные дороги, автомобили, летательные аппараты и т. д. В северных районах охлаждение материалов может достигать -60 °С, корпуса самолетов и космических аппаратов могут охлаждаться до температуры жидкого кислорода (-183 С). Детали и отдельные узлы холодильной и криогенной техники, которые используются для получения, хранения, транспортировки сжиженных газов, охлаждаются до температуры жидкого гелия (-269 °С). При низких температурах у металлов наблюдаются потеря пластичности и вязкости и повышенная склонность к хрупкому разрушению. Основное требование к материалам, работающим в условиях низких температур, — это отсутствие хладноломкости.  [c.142]


Если при рабочем давлении скорость потока кислорода превышает допустимые пределы, применяют трубы из меди или латуни. Все надземные кислородопроводы давлением 6,4 МПа и выше изготовляются только из медных или латунных труб. Для изготовления труб для транспортировки жидкого кислорода применяют медь, алюминиевые сплавы и коррозионно-стойкую сталь, сохраняющие прочность и вязкость при криогенных температурах.  [c.214]

На свойства стали при низких температурах существенно влияют химический состав, способ производства и режим термической обработки. Хорошо сопротивляется динамическим нагрузкам при минусовых тем пературах спокойная мартеновская сталь, раскисленная алюминием. Кипящая мартеновская сталь, раскисленная только ферромарганцем, проявляет низкую ударную вязкость при более высоких температурах. Наиболее хрупкой при низких температурах является кипящая углеродистая сталь, выплавленная в бессемеровских конвертерах. По сравнению со спокойной мартеновской сталью она содержит повышенное количество фосфора и растворенных газов азота и кислорода.  [c.235]

Уплотнение или полимеризация органических веществ — процесс, при котором происходит соединение молекул непредельных углеводородов в более крупные молекулы в результате замыкания углеводородных цепей по месту двойных связей. Уплотнение органических веществ может происходить под влиянием высокой температуры, тихого разряда электричества, действия кислорода воздуха, хлористой и элементарной серы и других факторов. Продукт, получаемый в результате полимеризации, отличается от исходного повышенными значениями вязкости, молекулярной массы, кислотного числа, меньшей степенью ненасыщен-ности. Полимеризации подвергают как обычные непредельные углеводороды, так и растительные и животные жиры, в состав которых входя г ненасыщенные жирные кислоты (свободные или в виде триглицеридов). Наиболее часто применяются смазки, получаемые уплотнением растительных жиров и их продуктов.  [c.149]

На фиг. 8 приведена проекция поверхности ликвидуса четверной системы СаО — MgO — АЬОз — SIO2 при содержании 15% АЬОз-Как видно из приведенной диаграммы, если состав шлака находится в области существования периксена, он будет гомогенно жидким при 1300°, он также будет обладать удовлетворительной вязкостью. Этим, в частности, объясняется успешное использование смеси алюминиево-магниевого порошка с силикокальцием в качестве флюса для поверхностной зачистки нержавеющих сталей [11] [21]. При этом входящий в порошковую смесь алюминиево-магниевый порошок, сгорая в струе кислорода, повышает температуру пламени, а силико кальций действует на окислы хрома в зоне резки как флюс тощая добавка.  [c.16]

Рис. 3.41. Зависимость ударной вязкости металла швов, выполненных на сталях 16ГНМЛ (а) и 15Х2НЛ1ФЛ (б) с изменяющимся содержанием кислорода, от температуры испытаний Рис. 3.41. Зависимость <a href="/info/64486">ударной вязкости металла</a> швов, выполненных на сталях 16ГНМЛ (а) и 15Х2НЛ1ФЛ (б) с изменяющимся <a href="/info/321463">содержанием кислорода</a>, от температуры испытаний
Мазут представляет собой [ устую тем-но-бурую жидкость с преобладающим содержанием предельных и непредель-Ш.1Х углеводородов и незначительным содержанием кислорода, азота, золы и влаги. В зависимости от содержания серы. мазуты подразделяются иа малосернистые (5 0,5%), сернистые (8 С. 2%) и высокосернистые Сь 3,5%). Мазут бывает шести марок - Ф5, Ф12, 40, 100, 200 и МП. В котельных установках используют мазут только марок 40, 100 и 200 (табл. И .3). Качество мазута характеризуется вязкостью, температурой застывания и вспышки, теплотой сгорания, а также содержанием серы.  [c.25]

В работе И. С. Руденко и Л. В. Шубникова экспериментальные данные представлены в таблицах и на графике, построенном в координатах вязкость-температура. Для азота приведено восемь опытных точек в интервале температур 63,9—77,3° К, для кислорода — 16 точек в интервале 54,4—90, Г К и для аргона — четыре точки при 84,2—87,3° К. Погрешность своих данных авторы [154] оценили равной 1,4%, однако указали, что при наиболее низких температурах погрешность могла возрастать в связи с неточным измерением температуры кислородным термометром (в тот период отсутствовали надежные сведения о зависимости давления паров кислорода ниже 10 мм рт. ст. от температуры).  [c.173]

Как указывалось выше, толщина диффузионного слоя (которая колеблется обычно в пределах 0,001—0,1 см) растет при увеличении кинематической вязкости электролита v и коэффициента диффузии диффундирующего вещества и уменьшается при увеличении скорости движения электролита v . Коэффициент диффузии кислорода в воде равен 1,86 10" см /с при 16° С и 1,875 10" mV при 2, 7° С, т. е. увеличивается с ростом температуры. Изменение коэффициента диффузии кислорода в водных растворах Na l при 18° С приведено ниже  [c.238]

Медь. Вторым после серебра металлом с низким сопротивлением является медь. Для проводников используется электролитическая медь с содержанием Си 99,9% и кислорода 0,08%. Высокой вязкостью и пластичностью обладает бескислородная медь, содержащая кислорода не более 0,02%. Температура плавления меди 1084° С, температура рекристаллизации — около 270° С. При нагревании выше этой температуры резко снижается прочность и возрастает пластичность. На воздухе поверхность медного проводника быстро покрывается слоем закиси — окиси меди с высоким удельным сопротивлением. Высокочастотные медные токоведущие элементы защищают от окисления покрытием из серебра. Для обмоток маслонаполненных трансформаторов используют луженую медную проволоку. Техническая медная проволока диаметром от 0,1 до 12 мм выпускается твердая и мягкая, подвергаемая отжигу в печах без доступа воздуха. Мягкая проволока диаметром до 3 мм имеет временное сопротивление в среднем 0р = 27 /сГ/лл для твердой проволоки больше (Ор = 39 кГ мм% удельное сопротивление для твердой проволоки р = 0,018 ом -мм 1м, а для мягкой р = 0,0175 ом-мм м. Температурный коэффициент сопротивления меди TKR =4-45-10" Ijapad. Твердую медь применяют для контактных проводэв, коллекторов и т. п. Во всех этих  [c.274]


На коррозионное растрескивание оказывают влияние температура раствора и вязкость среды [30]. Установлено, что с повышением температуры увеличивается скорость роста трещины. По-видимому, это связано с уменьшением растворенного в воде кислорода, а также скорости пассивации титана. Критический коэффициент интенсивности напряжен ний сплава Т — 8 % А1 — 1 % V — 1 % Мо в 3,5 %-ном растворе Na I мало изменяется [ 30].  [c.37]

Характеристики вязкости смазки и температура ее десорбции определяют закономерности износа в зоне контакта. При этом смазочная среда предохраняет поверхности трения от непосредственного контакта. При добавлении в смазку химически активных веществ (сера и фосфоросодержащие вещества) процессы периодического разрушения и восстановления окис-ной пленки заменяются процессом образования и периодического разрушения пленок другого химического состава, структура и свойства которых зависят от компонентов химически активных добавок и могут изменяться в весьма широких пределах.. Износ при, ,этом остается механико-химическим, т. е. связанным с пластической деформацией, образованием и разрушением вторичных защитных структур на основе взаимодействия металла с химически активными добавками, но по интенсивности может изменяться как в сторону уменьшения, так и увеличения. Стойкость против задира резко увеличивается. Тонкие слои антифрикционных металлов на телах качения защищают поверхность стали от взаимодействия с кислородом воздуха, Т. е. играют роль смазочной среды. Поэтому покрытие рабочих поверхностей подшипников качения тонким слоем антифрикционных металлов предотвращает интенсивное окисление поверхностей трения и снижает скорость окислительного износа. Тонкие пленки увеличивают также площади фактического контакта при соприкосновении тел качения,  [c.105]

Выпускаемые нефтяной промышленностью масла различных сортов отличаются друг от друга по ряду показателей, из которых важнейшими являются вязкость, смазочная способность (маслянистость), температура вспышки, температура застывания, способность отделяться от воды (т. е. деэмульгировать), химическая и термическая стабильность (т. е. способность выдерживать значительный нагрев в присутствии кислорода воздуха без существенного изменения состава масла). Все эти свойства масел зависят от их химического состава, технологии получения и способа очистки. Очистка смазочных масел производится для того, чтобы удалить из них непредельные углеводороды и асфальто-смолистые вещества, присутствие которых в маслах приводит к быстрому окислению и осмолению последних в процессе эксплуатации. Окисление масел вызывает коррозию смазываемых поверхностей и элементов смазочной системы, а также загрязнение их продуктами окисления. Присутствие в маслах большого количества продуктов окисления и смолистых веществ может привести к закупориванию трубопроводов и смазочных каналов. Помимо этого, очистка масел улучшает также температурно-вязкостные характеристики их.  [c.22]

Вредные примеси (сера и фосфор) и растворенные газы (азот и кислород) повышают порог хладноломкости. Однако наибольшее влияние на ударную вязкость стали при минусовых температурах оказывает химический состав. Хорошо сохраняют ударную вязкость в области низких температур стали, легированные 5—6 % никеля. Аустенит-ные хромоникелевые стали и сплавы на никелевой осново весьма пластичны в области очень низких температур. Поэтому ГОСТ 5632—72 допускает, например, поковки из сталей 04Х18Н10 и 08Х18Н12Б к применению в сосудах, работающих под давлением до температуры —269 °С.  [c.207]

Сжигание мазута в определенных условиях может сопровождаться появлением сажи, что хорошо видно по окраске дыма. Причиной сажеобразования бывают нехватка воздуха, грубые нарушения гидродинамики форсунок, повышенная вязкость топлива и т. п. Положение усугубляется при работе с малой нагрузкой, когда температуры топки недостаточны для дожигания мелкодисперсных частиц углерода. Особенно опасны в этом отношении пусковые периоды. Неналаженность оборудования сочетается здесь иногда с длительной (сутками) работой на холостом ходу, необходимой для наладки регулирования турбины, сушки генератора, настройки электрической защиты и т. п. Образуюш,аяся сажа накапливается по газоходам и особенно в узких пазах набивки регенеративного воздухоподогревателя. При дальнейшем повышении нагрузки, а следовательно, и температуры происходит самовозгорание сажи или зажигание ее от случайных очагов. В рекуперативных трубчатых подогревателях пожары, как правило, бывают после останова котла, так как при его работе дымовые газы бедны кислородом и процесс горения не развивается. В регенеративных воздухоподогревателях кислород поступает при прохождении набивки через воздушный канал, и раз начавшись, пожар быстро прогрессирует. После прогрева до 800—1 000° С в горение включается сталь, имеющая теплоту сгорания около 1 ООО ккал1кг. Температура быстро повышается, ротор деформируется и заклинивается, набивка размягчается, спекается в куски или в виде жидких струй вытекает в короб. Пожары развиваются с большой скоростью и наносят огромный ущерб. Первым признаком пожара является быстрый рост температуры уходящих газов и горячего воздуха. Для практических целей за сигнал тревоги надо принимать повышение температуры на 20—30° С выше обычной. По мере развития пожара начинается выбивание искр через периферийные уплотнения воздушного сектора и разогрев до видимого глазом каления газовых коробов.  [c.291]

В соответствии с исследованиями [44], при температуре 1400° С под влиянием углерода, выделяющегося из органических связующих и добавок, происходит восстановление двуокиси кремния по реакции Si02+ Si0f+С0. Поэтому окисление компонентов жидкого металла в дальнейшем может идти через газовую фазу СО. Наличие в жидком металле водорода, азота и кислорода, не связанных в соединения, интенсифицирует образование неметаллических включений в процессе кристаллизации жидкого металла. Количество, форма, размер и распределение неметаллических включений определяются большим количеством факторов, в том числе интервалом и фронтом кристаллизации, температурой и вязкостью, конвективными потоками и режимом питания отливки, вводом раскислителей и модификаторов. Если продукты раскисления смачиваются жидким металлом, включения имеют сплющенную или более сложную форму, если не смачиваются,— сферическую.  [c.100]

Чтобы определить параметры плазмы, представляющей собой высокотемпературную равновесно реагирующую газовую смесь, прежде всего необходимо найти ее состав. Очевидно, что точность расчета состава будет определяться не только погрешностью вычислительного процесса, но в первую очередь — полнотой учета физических и химических эффектов, имеющих место в реагирующей смеси. Однако полный учет этих явлений затруднен. В то же время для получения результатов с достаточной для инженерных расчетов точностью можно принять следующие допущения в реакции горения участвует все топливо воздух состоит только из азота и кислорода смесь газов, составляющих продукты сгорания, является идеальным газом в исследуемом диапазоне температур и давлений полностью отсутствует термическая ионизация газовых компонент рассматривается однокомпонентпая легкоионизируемая присадка ее влияние на термодинамические параметры газовой смеси учитывается в приближенной форме введением соответствующих поправочных коэффициентов влияние присадки на вязкость и теплопроводность не учитывается а электропроводность рассчитывается методом малых возмущений.  [c.109]


В закритической области вещество находится в однородном состоянии, и в нем отсутствует резкое разделение на отдельные фазы, что имеет место при пересечении пограничной кривой вдали от критической точки. Различие между жидкостью и паром в этой области носит лишь количественный характер, поскольку между ними можно осуществить непрерывный переход без выделения или поглощения скрытой теплоты изменения агрегатного состояния. Однако в указанных переходах непрерывный ряд микроскопических однородных состояний содержит области максимальной микроскопической неоднородности флуктуац ионного характера. Существование такой микроскопической неоднородности связано с падением термодинамической устойчивости первоначальной фазы и с возникновением внутри >нее островков более устойчивой фазы. Указанная внутренняя перестройка вещества, несмотря на свою нелрерывность, имеет узкие участки наибольшего сосредоточения, которые обусловливают появление резких скачков теплоемкости, сжимаемости, коэффициента объемного расширения, вязкости и других свойств вещества. Эти явления демонстрировались рис. 1-5, где был показан характер изменения критерия Прандтля для воды, и перегретого водяного пара от температуры и давления, и рис. 1-6 — для кислорода в зависимости от температуры при закритическом давлении. Из графиков следует, что при около- и закритиче-ских давлениях наряду с областями резкого изменения физических параметров имеются области, где они изменяются с температурой незначительно. При высоких давлениях в области слабой зависимости тепловых параметров от температуры теплоотдача подчиняется обычным критериальным зависимостям. В этом случае при проведении опытов можно не опасаться применения значительных температурных перепадов между стенкой и потоком жидкости, обработка опытных данныл также не  [c.205]

Окисление нефтяных жидкостей можно охарактеризовать как процесс присоединения кислорода к наименее стабильным углеводородам. Жидкости, которые содержат большое количество таких компонентов, окисляются легко. При продолжительном действии высокой температуры и катализатора, ускоряющего реакцию, отдельные молекулы могут разрушиться и перейти из стабильных в менее стабильные формы. В результате окисления в жидкости образуются растворимые кислые продукты, а также продукты высокого молекулярного веса, обусловливающие повышение ее вязкости и образование в ней продуктов еще большего молекулярного веса, которые выпадают в виде лакообразных отложений и тяжелых липких осадков. Степень окисления жидкости может быть оценена ее числом нейтрализации (наличием кислых продуктов).  [c.185]

Основные элементы, присутствующие в титане как примеси, по характеру влияния на его механические свойства могут быть разделены на несколько групп. Кислород и азот — элементы внедрения, а-стабилизаторы — резко повышают температуры лоли-морфного превращения и плавления, образуют с титаном соединения типа оксидов, субоксидов и т. п., существенно искажают кристаллическую решетку а-титана. Из рис. 13 и 14 следует, что оба элемента являются сильными упрочнителями так, каждая десятая доля процента (по массе) кислорода повышает прочностные свойства титана примерно на 13 кгс/мм [112, 120]. Соответственно росту прочности снижаются пластичность и вязкость. Однако концентрационные зависимости механических свойств имеют плавный характер, следовательно, поддаются в определенных пределах учету и регулированию.  [c.45]

При увеличении температуры выше 520° К возрастает вязкость жидкости и в общей полупрозрачной массе состава СгОо.эе начинают появляться включения новой фазы темно-серого цвета с металлическим блеском. Выше 533—563° К образцы затвердевают и под микроскопом имеется лишь одна серая фаза общего состава СгОг,9о. Дальнейшее нагревание приводит к выделению красных паров хромового ангидрида и появлению черных пористых образований неправильной формы, которые при нагревании выше 720° К рассыпаются в зеленый порошок окиси хрома с небольшим избытком кислорода.  [c.22]

В момент растворе]Н1я ферротитапа в металле тнтан окисляется в основном окислами шлака — Si02, МпО, СгаОз, FeO — н частично кислородом воздуха. С повышением температуры и содержания двуокиси титана в шлаке его вязкость снижается и в связи с этим увеличивается скорость передачи кислорода через шлак.  [c.141]

Для процесса ЭШП характерна большая поверхность раздела металла и шлака вследствие образования пленки жидкого металла на конце электродов, капель металла, стекающих с конца электрода и поверхности самой ванны. В процессе ЭШП создаются самые благоприятные условия для удаления серы безжелезистый шлак, высокая температура, малая вязкость и большая поверхность контакта с металлом. Удаление серы из шлака происходит путем ее окисления на поверхности шлаковой ванны кислородом воздуха по реакции (S)-f 02=502. После ЭШП содержание серы в стали снижается до 0,001 %.  [c.215]

Для наземных и подземных трубопроводов газообразного кислорода применяют стальные трубы, когда скорость его потока не превышает 8 м/с. Если при рабочем давлении скорость потока кислорода больше допустимой или во всех надземных кислоро-допроводах давление не ниже 6,4 МПа, то используют трубы из меди или латуни. Трубы, предназначенные для пропускания жидкого кислорода, создают из меди, алюминиевых сплавов и коррозионно-стойкой стали, сохраняющих прочность и вязкость при низких температурах. Межцеховые кислородопроводы можно выполнять подземными и наземными.  [c.302]


Смотреть страницы где упоминается термин Кислород, вязкость температурах : [c.16]    [c.131]    [c.107]    [c.181]    [c.318]    [c.76]    [c.77]    [c.78]    [c.85]    [c.248]    [c.203]    [c.430]   
Справочник по теплофизическим свойствам газов и жидкостей (1972) -- [ c.492 , c.494 ]



ПОИСК



Кислород

Кислород, вязкость

Кислород, вязкость энталышя при высоких температурах н различных давления

Кислород, вязкость энтропия при высоких температурах и различных давления



© 2025 Mash-xxl.info Реклама на сайте