Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластическая пластичность диффузионная

Благодаря довольно высокой пластичности диффузионного слоя хромированную сталь можно подвергать холодной и горячей пластической деформации.  [c.15]

Существенную роль в пластической деформации металлов при высоких температурах играют диффузионные процессы. Роль диффузии— двоякая. С одной стороны, она может оказывать значительное влияние на сдвиговые механизмы пластической деформации, с другой — диффузионные процессы могут вызвать самостоятельное проявление пластического течения. Поэтому механизм диффузионной пластичности представляет собой механизм остаточного изменения формы благодаря диффузионным процессам.  [c.153]


СРЕДНЕТЕМПЕРАТУРНАЯ ( ТЕПЛАЯ ) ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ. Верхняя граница этой области — температура начала рекристаллизации. До этих температур основной механизм пластической деформации — внутризеренное скольжение. Характерные признаки для высокотемпературных механизмов деформации — диффузионные механизмы, межзеренное проскальзывание и т. д. — появляются обычно выше температуры начала рекристаллизации на 100—200°С (для стали). Увеличение скорости деформации смещает границу высокотемпературных механизмов в область более высоких температур, например для сталей обнаруживаются явные признаки высокотемпературных механизмов деформации при 500—600° С и 8=10 -f-10 с , в то время как при е=10 - 10 2 с эта граница смещается до 1000° С. Высокотемпературная деформация молибдена начинается с 1000° С при е=10- -н10- с-, а при е= = 10 с эта температура повышается до 1200° С. Особенно заметно повышение пластичности в диапазоне температур теплой деформации для металлов с о. ц. к. решеткой повышение скорости деформации приводит к ее снижению. Могут быть отклонения от этого правила для сплавов с г. п. у. и о. ц. к. решетками, что связано с наличием фазовых превращений.  [c.512]

Существует три механизма пластической деформации сдвиговой механизм, или механизм скольжения, двойни-кование, ползучесть или диффузионная пластичность. Первый и второй механизмы проявляют себя как при НИЗКИХ, так и при высоких температурах, тогда как третий механизм имеет место преимущественно при высоких температурах.  [c.76]

Ползучесть (диффузионная пластичность). При приложении к металлу напряжений и температурного поля происходит направленная диффузия атомов вдоль действующих напряжений и на границах зерен, что приводит к пластической Деформации металла и его разрушению. Процесс длительного деформирования металла при действии на него постоянного напряжения и температуры называется ползучестью. Процесс ползучести в ряде случаев может протекать очень долго (до 10 ч).  [c.78]

Диффузионная пластичность играет суш,ественную роль в ползучести мелкозернистых металлов и сплавов при высоких температурах. В остальных случаях пластическая деформация осуш,ест-вляется движением дислокаций.  [c.21]

На рис. 3-1,а, показаны изменения свойств углеродистой стали 20 при изменении температуры от 20 до 600° С. В интервале температур так называемой синеломкости (200—300° С) повышается прочность и снижается пластичность стали, поэтому следует избегать пластического деформирования малоуглеродистой стали в этом интервале температур. Этот интервал назван интервалом синеломкости потому, что после выдержки стали при температуре около 300°С светлая поверхность стали приобретает синий цвет, что обусловлено образованием тонкой окисной пленки. Снижение пластичности и повышение прочности в интервале синеломкости связано с диффузионной подвижностью атомов примесей. Пластическая деформация происходит путем перемещения дислокаций. Вокруг ядра дислокации, где имеются искажения кристаллической решетки, облегчается растворение ато мов примесей. Поэтому вокруг нее образуется облако примесей. В процессе пластической деформации облако движется за дислокацией и тормозит ее перемещение. В результате пластичность снижается, а прочность возрастает. При температурах ниже интервала синеломкости диффузионная подвижность облака мала и дислокация легко обгоняет его. При температурах выше интервала синеломкости диффузионная подвижность облака настолько возрастает, что оно практически перестает тормозить перемещение дислокаций и пластичность вновь возрастает.  [c.59]


Основные положения теории термической обработки деформированного металла. Для снятия упрочнения и повышения пластичности металла выполняют его термическую обработку. В основу теории этого процесса положены экспериментальные данные последних 70-80 лет. Принято считать, что при нагревании деформированный металл стремится перейти в равновесное состояние, характеризуемое при определенной температуре минимумом свободной энергии. Возврат механических свойств, т. е. снижение прочностных и повышение пластических характеристик металла, начинает ощущаться по мере активации диффузионных процессов. Наиболее низкотемпературным процессом считается отдых , при котором происходят некоторое перераспределение дислокаций, уменьшение радиуса их кривизны, уменьшение плотности дислокаций одного знака. Скорость отдыха контролируется в основном диффузионным потоком вакансий и примесных атомов вдоль дислокационных трубок.  [c.120]

При использовании волокон или проволоки со значительным запасом пластичности применимы практически все методы уплотнения прокатка, импульсное прессование с помощью взрыва или ударной нагрузки, гидроэкструзия и др. В случае армирования. металлов хрупкими или малопластичными волокнами чаще всего при.меняют процессы, при которых степень пластической деформации невысока, например, диффузионную сварку или прокатку с малыми единичными обжатиями.  [c.109]

Перед диффузионной сваркой соединяемые поверхности деталей необходимо подготовить. Поскольку величина пластических деформаций металла в зоне сварки мала, требуется, чтобы поверхности деталей имели хороший контакт и малую шероховатость. Пластичные  [c.277]

Так, например, гомогенизационный (диффузионный) отжиг (см. рис. 4.6, а, 1) выравнивает и устраняет неоднородность химического состава (ликвации) отливок, слитков, наплавленного металла за счет протекания диффузионных процессов при высоких температурах. Чем сильнее неоднородность, тем более продолжительной должна быть выдержка при высокой температуре. Рекристаллизационный отжиг (см. рис. 4.6, а, 2), который включает нафев металла выше температуры его рекристаллизации (примерно до 0,5 от температуры его плавления), дает возможность устранить структурную неоднородность (текстуру) и упрочнение (наклеп), вызванные предшествующей холодной пластической деформацией, и повысить пластичность.  [c.486]

По технологии изготовления изделий магниевые сплавы разделяют на литейные (маркировка МЛ ) и деформируемые ( МА ). Магниевые сплавы подвергаются различным видам термической обработки. Так, для устранения ликвации в литых сплавах (растворения выделившихся при литье избыточных фаз и выравнивания химического состава по объему зерен) проводят диффузионный отжиг (гомогенизацию) фасонных отливок и слитков (400—490 °С, 10—24 ч). Наклеп снимают рекристаллиза-ционным отжигом при 250—350 °С, в процессе которого уменьшается также анизотропия механических свойств, возникшая при пластической деформации. Магниевые сплавы, в зависимости от состава, могут упрочняться закалкой (часто с охлаждением на воздухе) и последующим старением при 150—200 °С (режим Тб). Ряд сплавов закаливается уже в процессе охлаждения отливок или поковок и может сразу упрочняться искусственным старением (минуя закалку). Однако часто ограничиваются только гомогенизацией (закалкой) при 380—540 °С (режим Т4), ибо последующее старение, повышая на 20—35% прочность, приводит к снижению пластичности сплавов.  [c.178]

Деформируемые бронзы содержат до 6 - 8 % Sn (табл. 10.6). В равновесном состоянии они имеют однофазную структуру (а-твердого раствора (см. рис. 10.12, а). В условиях неравновесной кристаллизации наряду с твердым раствором может образоваться небольшое количество й-фазы. Для устранения дендритной ликвации и выравнивания химического состава, а также улучшения обрабатываемости давлением применяют диффузионный отжиг, который проводят при 700 — 750 °С. При холодной пластической деформации бронзы подвергают промежуточным отжигам при 550 — 700 °С. Деформируемые бронзы характеризуются хорошей пластичностью и более высокой прочностью, чем литейные.  [c.311]


Результаты исследования свидетельствуют о решаюш ем влиянии размера зерен на горячую пластичность исследованных материалов. Вместе с тем нестабильность микроструктуры никеля и нихрома не позволяет в полной мере реализовать их СП свойства. Несмотря на качественную аналогию проявления эффекта, наблюдается и заметное различие в поведении обоих сплавов, связанное с неодинаковым их химическим составом. Введение хрома значительно замедляет диффузионные процессы. Неудивительно, что при 800 °С плотность дислокаций в структуре деформированного нихрома значительно выше, чем у никеля. По-видимому, замедление диффузии в нихроме существенно затрудняет поглощение дислокаций границами зерен и это приводит к значительному уменьшению его пластических свойств. Для повышения пластичности необходимо повышение температуры деформирования нихрома.  [c.232]

Изложенная картина не ограничивается высокопрочными сплавами, обладающими специфической микроструктурой (малыми частицами фазы). Найденные закономерности пластического течения, сводящиеся к потере устойчивости системы, локализации деформации, развитию ротационной пластичности и т.п., должны проявляться также во всех материалах, где скорость сдвиговой деформации существенно зависит от концентрации точечных дефектов и обеспечивается высокий уровень напряжений. Такие условия могут достигаться, в частности, на стадии развитой пластической деформации независимо от исходной микроструктуры и механических свойств материала. При этом деформационное упрочнение приводит материал в состояние, обладающее значительными величинами неоднородных полей напряжений и деформационными дефектами типа дислокационных клубков. Подобная ситуация проявляется при интенсивном облучении, имплантации, насыщении металлов атомами малого размера (например, наводороживании) и т. д. По нашему мнению, развитая картина может объяснить известный экспериментальный факт, согласно которому на стадии развитой пластической деформации образуются преимущественно высокоугловые границы наклонного типа [205]. Действительно, именно такие фаницы формируются путем диффузионного массопереноса и инициируемого вакансиями переползания краевых компонент дислокаций.  [c.255]

При относительно низких температурах по отношению к температуре плавления появляется только сдвиговая пластичность, которая также может рассматриваться как ориентированная диффузия, ускоренная под влиянием напряжений. При более высоких температурах начинают проявляться другие механизмы пластичности. Таким образом, всякая пластическая деформация, согласно А. А. Бочвару, может быть сведена к диффузионным явлениям, развивающимся внутри кристалла (сдвиг), по поверхности кристаллов одной фазы или по поверхности раздела двух фаз. С этой точки зрения объясняют явления сверхпластичности гетерогенных сплавов [6]. Растворный механизм диффузии играет при межфазовых перемещениях ту же роль, что и рекристаллизация при межзеренных перемещениях. Отсюда следует, что характер взаимодействия и изменение взаимной растворимости различных фаз гетерогенных сплавов оказывают существенное влияние на пластичность при повышенных и высоких температурах.  [c.119]

В процессе сварки давлением собранные детали сдавливают усилием Р (рис. 179). При сварке давлением соединение заготовок достигается путем совместной пластической деформации соединяемых поверхностей. Пластическая деформация осуществляется за счет приложения внешнего усилия при этом материал в зоне соединения, как правило, нагревают с целью повышения пластичности. В процессе деформации происходит смятие неровностей, разрушение окисных пленок, в результате чего обеспечивается плотный контакт между заготовками. К способам сварки давлением относятся контактная, диффузионная, холодная и прессовая, трением, ультразвуком, взрывом и др.  [c.388]

Разрушение металла при высоких температурах недостаточно изучено. Однако установлено, что деформация и разрушение при высоких температурах происходят по границам зерен. Это объясняется тем, что по границам зерен, содержащих большое количество дефектов (вакансий, дислокаций и т. д.), легко протекают диффузионные процессы. Когда напряжения отсутствуют, диффузионные перемещения пограничных атомов не имеют направленного характера. При наличии даже небольших напряжений передвижение атомов на границах зерен способствует ползучести металла и приводит к остаточной деформации вследствие перемещения одного зерна относительно другого вдоль поверхности их раздела. Такой механизм пластической деформации называется диффузионной пластичностью, в отличие от сдвиговой, по объему зерна, описанной нами ранее.  [c.60]

Растворно-осадительный механизм диффузионной пластичности впервые отметил А. А. Бочвар [6]. Им указано, что для обеспечения высокой пластичности нужно создавать возможность перемещения частиц и взаимодействия фаз за счет переноса вещества. Для осуществления этого механизма необходимо наличие двух фаз. И, наконец, дислокационно-диффузионный механизм пластической деформации представляет собой перемещение дислокаций совместно с облаком , состоящим из растворенных в основной кристаллической решетке атомов, окружающих дислокацию.  [c.282]

На основе направленных вакансионных потоков в работах Френкеля, а затем Набарро и Херринга были предложены модель и механизм внутризеренной диффузионной пластичности . Здесь используется известный факт о том, что диффузионные процессы особенно интенсивно протекают по границам зерен, т. е. в местах с наибольшим искажением кристаллической решетки. Границы зерен являются источниками и стоками направленного движения вакансий в поле приложенного напряжения, причем поток вакансий идет через объем зерна и направлен от по-перечных границ к продольным (рис. 92), а поток атомов движется в противоположном направлении. Происходят мас-соперенос и пластическое течение. Эти потоки приводят к удлинению зерна в продольном направлении и сокращению 3 поперечном, поскольку объем зерна Рис. 92. Направленные пото- остается неизменным. Вследствие низкой ки вакансий при деформации ПОДВИЖНОСТИ граннц зерен формоизме-зерна (а — приложенные на- нение зерна фиксируется, а деформации пряжения) становятся необратимыми. Этот меха-  [c.156]


На основе направленных вакансионных потоков в работах Френкеля, а затем Набарро и Херринга были предложены модель и механизм внутризеренной диффузионной пластичности . Здесь используется известный факт о том, что диффузионные процессы особенно интенсивно протекают по границам зерен, т. е. в местах с наибольшим искажением кристаллической решетки. Границы зерен являются источниками и стоками направленного движения вакансий в поле приложенного напряжения, причем поток вакансий идет через объем зерна и направлен от поперечных границ к продольным (рис. 92), а поток атомов движется в противоположном направлении. Происходят мас-соперенос и пластическое течение. Эти потоки приводят к удлинению зерна в продольном направлении и сокраш,ению  [c.158]

Было обнаружено, что при высоких температурах (выше 7 рек) максимальной пластичностью обладают однофазные сплавы со структурой а-феррита. Установлено, что выше 1000° С деформация а-фазы с низким значением Ое,а в стали (1Х21Н5Т) значительно больше, чем деформация -фазы с высоким значением а s.y, а при 1200° С разница достигает шестикратной величины. Большое различие в сопротивлении деформации фаз вызывает локальные деформации и концентрацию напряжений. Напряжения достигают критической величины и приводят при горячей деформации к образованию микротрещин. Заниженное сопротивление деформации и высокая пластичность при высоких температурах объясняются большей энергией дефектов упаковки и скоростью диффузионных процессов в -твердом растворе и, следовательно, более интенсивным протеканием процессов динамической полигонизации и рекристаллизации, диффузионного переползания дислокаций как основного механизма пластической деформации при повышенных температурах.  [c.498]

При высоких температурах влияние величины зерна на пластичность и сопротивление деформации изучено недостаточно. Однако установлено, что и при высоких температурах отмеченная выше тенденция сохраняется, т. е. сопротивление деформации и пластичность уменьшаются с ростом величины зерна, причем с повышением температуры пластичность сталей 000X28 (0,02% С) и Х28 (0,1% С) повышается независимо от величины зерна (рис. 271,а). Наоборот, для кремнистой стали существенное различие в пластичности установлено для 800 °С (рис. 271,6), которое нивелируется при более высоких температурах, причем с повышением температуры пластичность более мелкозернистой стали уменьшается, что можно объяснить ростом размера зерен при нагреве однофазной кремнистой стали в диапазоне температур 800—1000 °С. Рост зерен с повышением температуры для двухфазных сталей затруднен и поэтому в них наблюдается увеличение пластичности с ростом температуры за счет развития диффузионных процессов, увеличения числа систем скольжения и механизмов пластической деформации. Однако для хромистых сталей наряду с ростом пластичности при уменьшении величины зерна наблюдается аналогичное уменьшение сопротивления деформации, что связано с проявлением эффекта сверхпластичности, так как при повышенной температуре эти стали (000X28 и Х28) являются по существу двухфазными с наличием устойчивой твердой ст-фазой. Поэтому не случайно, что влияние величины зерна на пластичность  [c.509]

Необходимо указать также факторы, связанные с технологическими особенностями проведения ВМТО. Определенный вклад в получаемый эффект упрочнения дает текстурованность материала, подвергнутого прокатке [71, 72]. Деформация в области высоких температур (1000° и выше) может привести в некоторых случаях к возникновению субструктуры в результате диффузионного перераспределения дефектов кристаллической решетки. Такие изменения в тонкой кристаллической структуре, если они протекают во всем упрочняемом объеме, должны оказывать благоприятное действие, когда при ползучести развивается преимущественно внутризеренная пластичность, однако опыты [87] показывают, что субструктура образуется главным образом у границ зерен, а это еще раз свидетельствует о более интенсивной пластической деформации в этих областях при задаваемых режимах ВМТО.  [c.49]

Разрушение по границам элементов структуры — межзеренное или межъячеистое разрушение, при котором трещина идет по границам зерен или дислокационных ячеек. Различают хрупкое межзеренное разрушение, которому предшествует пластическая деформация-внутренних объемов зерен и пластичное межзеренное разрушение. Указанные типы межзеренного разрушения обычно относят к низкотемпературным типам разрушения. Кроме того, существуют высокотемпературное межзеренное разрушение и межзеренное разрушение при ползучести. Эти механизмы обусловлены высокотемпературным-проскальзыванием по границам зерен и диффузионным зарождением пор на границах. Они подробно изложены в обзорах Эшби с сотрудниками [404].  [c.201]

В большинстве встречающихся на практике случаев образующаяся при диффузионной пайке структура шва двухфазная твердый раствор a-Ti и ннтерметаллидные включения. Изменение механических свойств сплавов, имеющих в своем составе интер-металлиды, зависит от особенностей выделения второй фазы и характера дисперсионного механизма упрочнения. В результате дисперсных выделений может иметь место как упрочне-нение, так и разупрочнение сплава. Выделение небольшого количества второй фазы в мелкодисперсном состоянии сопровождается повышением прочности и уменьшением пластичности. Вторая фаза в этом случае вносит искажения в кристаллическую решетку металла. Увеличение количества выделяющейся избыточной фазы может послужить причиной резкого уменьшения пластических и прочностных свойств, если эта фаза выделяется в виде сетчатого каркаса. Менее опасны интерметаллиды в случае их выделения в виде сосредоточенных включений.  [c.41]

Влияние вакансий на свойства при высоких темцературах прежде всего связано с той ролью, какую они играют в диффузионных процессах (см. гл. П1). Отметим здесь, что вакансии могут облегчать преодоление препятствий при движении дислокаций в плоскости скольжения. При этом уменьшается сопротивление ползучести. Этот эффект проявляется при достаточно большой плотности вакансий. Вакансии играют значительную роль в разрушении металла в процессе ползучести. Разрушение при высокой температуре металлов, пластичных при комнатной температуре, часто происходит при небольшой пластической деформации. При этом в процессе деформации возникают и постепенно развиваются мельчайшие трещинки и полости. Высказывалось предположение, что такие поры образуются вследствие коагуляции вакансий, избыточную концентрацию которых вызывает пластическая деформация (подробнее см. гл. IX).  [c.71]

Применяемые в сварочном производстве методы сварки по способу соединения поверхностей заготовок делятся на три класса термический, механический, термомеханический. При термических методах сварки происходит расплавление кромок свариваемых заготовок. Если при этом не получается качественного шва, в зазор вводится присадочный материал. После затвердевания образовавшейся сварочной ванны получается соединение — сварной шов. Согласно ГОСТ 19521-74, к термическим методам сварки относят электродуговую, электрошлаковую, газовую, электронно-лучевую, плазменную, термитную, лазерную и др. При механических методах сварки соединение заготовок происходит путем совместной пластической деформации соединяемых поверхностей за счет приложения внешнего усилия. К этим методам относят сварку трением, взрывом, холодную, ультразвуковую и др. При термомеханических методах сварки одновременно с приложением внешне1 о давления, материал в зоне соединения нагреваютдля снижения сопротивления деформации и в целях повышения его пластичности. К термомеханическим методам сварки относят контактную, диффузионную, газопрессовую, кузнечную и др.  [c.324]


Диффузионную сварку сплавов ВТ8 и ВТ25 проводили по той же схеме, что и для сплава ВТЗ-1. Механические свойства сварных соединений сплава ВТ8 приведены в табл. 165, а сплава ВТ25 в табл. 166. Предел прочности сварных соединений сплава ВТ8 — не менее 95 кгс/мм , а сплава ВТ25 не менее 107 кгс/мм , пластические свойства сварных соединений зависят от характера разрушения образцов. При разрушении по шву пластичность ниже.  [c.367]

Эффект одновременного повышения прочности и пластичности сопровождается развитием интенсивных пластических деформаций, которые, изменяясь от цикла К циклу, являются причинно-следственной характеристикой,, позволяющей проследить кинетику и все этапы упрочнения при ТЦО. Аппаратом исследования служат анализ кривой пластических деформаций( ковариационная и автокорреляциокная функции. Экспериментами установлено, что изменение дисперснн пластических деформаций и координатной части корреляционной функции связано с развитием. фазового наклепа, а изменение козариационной функции при нулевом значении сдвига указывает на развитие диффузионной релаксации напряжений.  [c.29]

Последующее развитие техники полностью подтвердило справедливость мнения В. Л. Кирпичева с существенными уточнениями пластичность необходима не только при наличии ударов, но часто при статических нагружениях для элементов конструкций важна прежде всего местная, а не общая пластичность полезное влияние (увеличение локального энергопоглощения) могут оказывать местные неупругие деформации разной природы, а не только пластические, например вязкие. Выход за пределы чисто упругого состояния вызывается общими или локальными явлениями, существенно повышающими энергопоглощение пластическими или вязкими сдвигами, двойникованием, диффузионными и дислокационными процессами, перемещениями вакансий и т. д. При этом существенно увеличивается скорость нарастания деформаций и соответственно возрастает величина деформации. Например, у сталей наибольшее упругое удлинение имеет величину порядка 1 % (за исключением нитевидных кристаллов, упругое удлинение которых может достигать 5% и более), в то время как наибольшая пластическая деформация достигает десятков процентов. Большинство расхождений между выводами из расчетов теории упругости и сопротивления материалов с результатами механических испытаний и опытом эксплуатации Изделий является следствием проявления неупругих состояний. Эти проявления могут быть как полезными, способствующими местному благоприятному перераспределению напряжений при выходе за пределы упругого состояния, так и вредными чрезмерная общая деформация изделий вследствие текучести и ползучести, затрудненная обработка резанием ввиду высокой вязкости, плохая прирабатываемость и наволакивание материала при трении и т. п.  [c.107]

Аморфно-диффузионный процесс приводит к то.му, что при высоких температурах, близких к температуре плавления, металлы наряду со свойствами пластических тел приобретают вязкие овойства,, хара1ктерные для аморфных тел. В аморфных телах сопротивление деформации и пластичность зависят от скорости деформации и гидростатического давления и не зависят от степеии деформации.  [c.145]

Далее будут рассмотрены факторы, приводящие к высокотемпературному упрочнению, но при этом необходимо учитывать, что некоторые легирующие элементы, в действительности, приводят к уменьшению высокотемпературной прочности альфа-твердого раствора — например, наличие углерода в гамма-железе. В то время как в растворе альфа-железа он вызывает заметное низкотемпературное упрочнение, при растворении в достаточном количестве в гамма-железе он существенно повышает скорость ползучести при заданном уровне напряжения. Как показал Шерби 1[35], это связано с тем, что углерод увеличивает скорость самодиффузии железа в гамма-железе. В общем случае поэтому основное влияние легирующих элементов на ползучесть определяется их влиянием на диффузионную подвижность. Естественно что этот фактор имеет особое значение для характеристик пластичности материалов при высоких температурах, так как для низкотемпературной пластичности диффузия не существенна. Вот почему пластические свойства материалов при высоких температурах обычно контролируются параметрами диффузии.  [c.300]

Исследование диффузионных процессов при трении с помощью радиоактивных индикаторов [30] позволило рассмотреть количественные параметры процессов ди( узии при статическом контакте и трении скольжения для разных металлов, условий нагружения и в зависимости от времени. Было показано, что диффузия непосредственно связана с пластической деформацией и резко интенсифицируется при трении чистых пластичных металлов (рис. 166). В результате исследования диффузионных процессов при контактировании меди и цинка для разных степеней деформации и условий нагружения  [c.286]

Жаропрочность - сопротивление стали разрушению при высокой температуре, зависящее не только от температуры, но и от времени. Механизм разрушения металла при высокотемпературном длительном нагружении имеет диффузионную природу и состоит в развитии дислокационной ползучести. Под действием температуры, времени, напряжений дислокации у барьеров, создавшие упрочнение, приходят в движение (совместно с облаком легирующих элементов и примесей) в результате взаимодействия с созданными нагревом подвижными вакансиями, которые обеспечивают их переползание в другие плоскости кристаллической решетки на границы зерен. Это приводит к разупрочнению, развитию локальной пластической деформации и охрупчиванию. Дислокации, выходящие на границы зерен, создают микроступеньки и вызывают из-за соответствующего изменения размеров контактирующих зерен межзеренное проскальзывание, раскрывающее микроступеньки в поры и трещины, чему способствуют потоки вакансий. В этих условиях прочность и пластичность металла зависят от температуры и времени, т.е. от длительности нагружения. Для предотвращения ползучести жаропрочность повышают двумя основными способами  [c.50]

Металл шва в таком состоянии имеет малую пластичность в интервале 1200...900 °С (ТИХг), что при действии сварочных деформаций приводит к образованию твердофазных ГТ диффузионно-дислокационной природы, также называемых подсолидусными (см. рис. 10.15, а). Наиболее часто они возникают при многопроходной сварке толстолистового металла, когда повторный дуговой нагрев вызывает пластическую деформацию в металле шва предыдущего прохода вследствие релаксации сварочных напряжений, а также нагревает его до околосолидусных температур, инициируя диффузионные процессы, снижающие пластичность.  [c.55]

Поскольку схватывание бездиффузионное явление, проявление его от времени практически не зависит. Спекание же — процесс, идущий во времени, и как правило для получения соединения в этом случае требуются относительно длительные промежутки времени. Спекание при температурах 1шже температуры порога рекристаллизации практически НС происходит, схватывание же при достижении в контакте определенных условий может происходить при любых температурах. В рассматриваемом случае уместна аналогия с процессами пластической деформации металлов. При температурах ниже порога рекристаллизации возможны только бездиффузионные механизмы пластическо деформации — сдвигообразование и двойникование. При более высоких температурах становится возможным диффузионный механизм пластичности, характерный для аморфных тел, но роль сдвигообразования и двойникования остается, по-видимому, определяющей до самых высоких температур, особенно. при сравнительно больших скоростях приложения нагрузки и деформирования.  [c.174]


Смотреть страницы где упоминается термин Пластическая пластичность диффузионная : [c.174]    [c.836]    [c.43]    [c.303]    [c.468]    [c.180]    [c.236]    [c.253]    [c.106]    [c.160]    [c.319]    [c.19]    [c.37]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.380 ]



ПОИСК



Пластичность диффузионная



© 2025 Mash-xxl.info Реклама на сайте