Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материаловедение, определение

Свойства материалов зависят главным образом от кристаллической структуры. Поэтому в материаловедении рассматриваются распределение и характер движения электронов, расположение атомов в пространстве, размеры и форма кристаллических образований. Располагая данными о строении материалов, можно в известной мере судить об их свойствах и пригодности для работы в определенных условиях эксплуатации.  [c.4]

Эта формула используется обычно в материаловедении для определения энергии дислокаций в кристалле ). Переменные а и Ь должны иметь конечные значения, ибо в противном случае энергия будет бесконечной. Внешний радиус Ь связан с общими размерами кристалла, внутренний радиус а связан с расстояниями между атомами в кристаллической решетке.  [c.259]


Комплексные прогнозы — это прогнозы развития определенного научного направления (например, материаловедения машиностроительной отрасли промышленности), построенные на основе локальных и частных прогнозов.  [c.17]

Исследования влияния облучения на физико-механические свойства материалов, используемых в реакторах, дали толчок для систематического изучения природы радиационных нарушений. В результате графит оказался первым материалом, в котором были обнаружены структурно-физические изменения его свойств под действием нейтронного облучения. Изучение радиационных нарушений в графите значительно расширяет круг вопросов материаловедения и физики твердого тела, а также исследования и разработки экспериментальных методов определения свойств материалов в процессе облучения.  [c.6]

С развитием атомной энергетики материалы основных элементов реакторов (твэлы, палы, датчики системы управления и т. п.) работают во все более высоких потоках излучения, в сложнонапряженном состоянии при высоких температурах, а масштабы промышленного использования реакторов непрерывно увеличиваются. В связи с этим значение вопросов физики радиационных повреждений непрерывно возрастает. В сферу исследований вовлекаются все больше исследователей, новых методов и оборудования. Это повышает значение организационного плана. С целью улучшения организации работ институтов Академий наук и Госкомитета по использованию атомной энергии, ведущих исследования в области физики радиационных повреждений, в СССР разработан и реализуется комплексный корреляционный эксперимент, основной задачей которого является выработка общего подхода к постановке, проведению и в определенной мере к интерпретации результатов исследований по различным проблемам физики радиационного повреждения и радиационного материаловедения. Корреляционный эксперимент предполагает следующее  [c.19]

К настоящему времени материаловедение, а также многие другие технологические науки остаются в основном экспериментальными. Это означает, что разработка какой-либо новой технологии или материала требует проведения достаточно широкого эксперимента, который зачастую очень дорог. Отсутствие глубокой теоретической базы лимитирует использование компьютерного эксперимента, поскольку в ряде случаев отсутствуют фундаментальные математические модели процессов, протекающих в металлах. Виной тому, по-видимому, можно считать традиционный, исторически сложившийся научный метод исследований, основа которого - анализ. Он хорош для определения влияния отдельных факторов на характер протекающего процесса и удобен для исследования многоуровневой системы, каковой и является деформируемый металл. Не случайно, очевидно, введено понятие уровней пластической деформации и структуре образования в металлах.  [c.148]


Основу материаловедения составляют экспериментальные исследования свойств изучаемых материалов и закономерностей их изменения при воздействии различных физических полей и материальных сред. В лабораторных условиях это делается путем экспериментального определения (измерения) параметров образцов изучаемого материала, изготовленных в соответствии с определенными требованиями, и, если это необходимо, параметров различных физических полей и материальных сред, действующих на этот образец извне.  [c.30]

Учение о прочности и разрушении материалов является важнейшей частью материаловедения, поэтому оно представляет для специалистов машиностроения большой интерес не только с точки зрения обеспечения прочности, надежности и долговечности изделий. Оно имеет и очень важное технологическое значение. Это объясняется тем, что основные, связанные с послойным удалением материала формообразующие и многие упрочняющие операции обработки деталей по своей сути представляют собой дозированное, технологически управляемое разрушение материала, осуществляемое по какому-либо определенному режиму. Особенно это касается современных самых перспективных, так называемых высоких технологий, основанных на применении в качестве инструмента концентрированных потоков энергии.  [c.4]

Способность текстильных волокон и нитей поглощать (сорбировать) водяные пары и воду и отдавать их в окружающую среду (десорбировать) характеризует их гигроскопические свойства. В текстильном материаловедении известно, что наиболее гигроскопичны волокна шерсти, шелка, льна, хлопка, а значит, и пряжа из них, а такие как стеклянные, поливинилхлоридные, полипропиленовые волокна практически не гигроскопичны. На влажность волокон и нитей оказывает существенное влияние влажность и температура окружающей среды (воздуха). Влажность определяет и массу нитей и материалов, что важно при определении материалоемкости (массы) текстильных изделий и учете продукции.  [c.690]

Взятая в целом эта книга представляет собой введение в материаловедение многокомпонентных полимерных систем как технически важных материалов с анализом основных принципов их создания и использования. Первая глава посвящена общим проблемам определения и классификации полимерных композиционных материалов на основе важнейших компонентов в их типичных сочетаниях с учетом таких факторов как взаимное распределение компонентов, их ориентация, взаимодействие между ними и др. За этой главой следуют более конкретные главы. Семь из них посвящены анализу важнейших физико-механических свойств полимерных композиционных материалов, таких как вязкость разрушения (устойчивость к росту трещин), жесткость, механическая прочность и другие с обобщением теоретических основ и принципов их регулирования. В последних пяти главах обсуждаются проблемы использования промышленных полимерных композиционных материалов на транспорте, в строительстве, для тары и упаковки и в других областях с анализом перспектив и направлений их дальнейшего развития.  [c.12]

Основной задачей рентгеноструктурного анализа является определение кристаллической структуры вещества. К этой физической (или кристаллохимической) задаче примыкает обширная область прикладного рентгеноструктурного анализа, связанная с материаловедением идентификация вещества по его крис-  [c.94]

Связь между твердостью металла и его характеристиками прочности при нормальной температуре всегда была предметом пристального внимания специалистов, работающих в области материаловедения и механических испытаний материалов. Известны эмпирические формулы [1, 2] для определения характеристик прочности сталей по ее твердости. Эти соотношения имеют вид  [c.88]

Одной из основных проблем материаловедения и металлургии является создание материалов с наибольшей вязкостью разрушения и наибольшей прочностью. Последнее требование выражено не вполне четко, так как прочность не является константой материала. Поэтому будем различать два понятия металлургическую прочность и конструкционную прочность. Под первой понимается (обычно приводимое в справочниках по материалам) значение прочности, полученное на гладких лабораторных образцах определенных размеров из материала в состоянии поставки. Прочность изделия из этого же материала (конструкционная прочность) иногда оказывается существенно меньшей. Особенно часто это происходит при приближении к области хрупкого разрушения.  [c.197]


Изучению структуры белков рибонуклеиновых (РНК) и дезоксирибонуклеиновых (ДНК) кислот — в настоящее время уделяется исключительно большое внимание не только в биологии, но и в математике, физике и материаловедении в связи с программой создания наноструктурных материалов и технологий их получения. К настоящему времени достигнуты фантастические успехи в молекулярной биологии по изучению генов различных белков, приведшие к клонированию и регуляции активности белков. Прогресс молекулярной биологии гена стал возможным в результате использования междисциплинарного подхода к детального изучения гена, связанного с выполнением клеткой определенных биологических функций.  [c.111]

Расчет деталей машин на прочность при ударной нагрузке связан, с одной стороны, с определением возникающих при ударе напряжений, с другой — с установлением свойств материалов при ударном нагружении. Решение первой из этих задач относится к области сопротивления материалов и смежных наук, второй — в основном к области материаловедения.  [c.475]

В процессе деформации ат изменяется. Поэтому От в теории пластичности следует отличать от предела текучести, применяемого в теории упругости, сопротивлении материалов и материаловедении. Последний определяется как условное напряжение, соответствующее площадке текучести, или как напряжение, соответствующее определенной величине остаточной деформации (например, 0,2% и тогда обозначают ао.г) при комнатной температуре и малых скоростях деформации. В дальнейшем 0-г будем называть сопротивлением пластической деформации или сопротивлением деформации.  [c.76]

Наиболее эффективен для этого искусственный холод, который широко применяют в химической промышленности при производстве взрывчатых веществ,анилиновых красителей, синтетического каучука и т. д. Искусственный холод применяют для регулирования химических реакций, сопровождающихся выделением теплоты в медицине при производстве некоторых сложных операций, требующих понижения температуры тела больного в материаловедении для проведения научных исследований и определения свойств металлов и других материалов в условиях низких температур в борьбе с грунтовыми водами (плывунами), для замораживания грунтов при проходке шахт, тоннелей. Установки искусственного холода применяют также для кондиционирования воздуха (поддержания постоянной температуры и влажности), имеющего большое значение для библиотек и книгохранилищ, где хранятся ценные рукописи и книги для метро больших кинотеатров и концертных залов палат мер и весов ряда инструментальных цехов, в которых изготовляют точные мерительные инструменты, и т. д. Кондиционирование воздуха применяют в современных самолетах, в лабораториях искусственного климата и т. п. С применением установок искусственного холода удалось получить очень низкие температуры, благодаря чему были обнаружены и изучены такие свойства вещества, как сверхтекучесть, сверхпроводимость и др.  [c.260]

Учитывая вышеизложенное, в лаборатории специального-материаловедения были разработаны методы и прибор, предназначенные для определения адгезии антифрикционного износостойкого покрытия любого типа.  [c.46]

Под такой маркой в лаборатории специального материаловедения создан и внедрен в производство самосмазывающийся антифрикционный материал [22, 45]. Особенность этого материала состоит в том, что благодаря его специфическому составу и структуре на поверхности трения контртела (например, стального вала) образуется тонкая пленка (покрытие) нового химического соединения. Исследование действия иодидов кадмия, свинца и висмута показало важную роль химических процессов, приводящих к качественному изменению поверхностных слоев металлов. Термодинамические расчеты и комплекс физических исследований указывают на то, что наиболее вероятным путем их образования является взаимодействие металлов с иодом, выделяемым при термическом разложении. В ряде случаев такое взаимодействие не отмечается, однако в присутствии иодидов и иода окисление металлической поверхности, например железа и сталей, сопровождается образованием определенного окисла металла и протекает с различной скоростью.  [c.73]

В различных отраслях техники широко применяются тонкослойные покрытия из полиамидных смол и полиэтилена. На де-тал 1 машин такие покрытия наносят газопламенным или вихревым методом. В лаборатории специального материаловедения проводились по двум направлениям исследования, направленные на улучшение физико-механических и антифрикционных свойств таких покрытий исследовалось влияние термообработки как фактора, позволяющего формировать структуру покрытия, а также влияние добавок в виде твердых смазок. Последние вводились следующим образом. Полимерный порошок высушивался, затем просеивался с целью отделения комков. После этого в полимерный порошок вводили определенное количество твердой смазки в виде графита или молибденита и масса тщательно перемешивалась. Полученная смесь наносилась на поверхность  [c.91]

Основная задача этого раздела материаловедения состоит в определении критериев оценки химического сопротивления композитов, которые позволяют надежно прогнозировать их работоспособность в тех или иных средах, и в разработке методов такого прогнозирования.  [c.8]

В учебном пособии особое внимание уделено изложению термино- логии и определений, широко используемых в инженерной практике и тесно связанных с областями использования материалов в современной технике. Химический состав, внутренняя структура и взаимодействие веществ в твердых телах определяют все физические свойства материалов. Поэтому учебный курс Материаловедение. Технология конструкционных материалов - один из основных в общем цикле технических дисциплин при подготовке инженерных и научных кадров.  [c.6]


От химического состава материала и его структуры во всех вышеперечисленных проявлениях зависят свойства материала. Определение путей создания материала с заданными свойствами -основная задача материаловедения. Совокупность управляемых процессов, реализуемых в конкретных условиях и устройствах с  [c.304]

Карзов Г. П., Костылев В. И., Марголин Б- 3. Определение параметров механики разрушения и скорости распространения трещин при импульсном нагружении элементов конструкций//Судостроит. пром-сть.— Сер. Материаловедение Сварка. — 1989. — Вып. 7. — С. 87—95.  [c.368]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

В квантовой электронике применяют системы, в которых используется энергия, запасенная в составляющих ее частицах — атомах, ионах, молекулах. Поскольку эти частицы получают и отдают энергию только определенными порциями — квантами, то приборы, работающие на этом принципе, называют квантовыми (усилителями, генераторами и др.). Для работы квантового прибора необходимо возбудить частицы системы или, как принято говорить, перевести их на более высокий энергетический уровень (уровни). Без разъяснения термина энергетический уровень нельзя понять. механизма работы приборов квантовой электроники. Используем для этого примеры, приведенные в работах польского физика А. Пекара. В качестве объекта исследования он предлагает рассмотреть энергетические уровни потенциальной энергии обычного квадратного стола и на этом примере познакомиться с терминологией, используемой в материаловедении квантовой электроники. (2тол может находиться на полу в шести положениях.  [c.58]

Для исследования напряженного состояния на поверхности раздела были разработаны аналитические методы. К ним относятся методы механики материалов, классической теории упругости и метод конечных элементов. Метод конечных элементов является наиболее универсальным и охватывает разнообразные граничные условия. Предполагаемая величина концентрации напряжений определяется условиями на поверхности раздела. Теоретические данные показывают, что концентрация касательных напряжений на концах волокон зависит от объемной доли волокна и геометрии его конца. Из этих данных также следует, что радиальное напряжение на поверхности раздела изменяется по окружности волокна и может быть растягивающим или сжимающим в зависимости от характера термических напряжений, а также от вида и направления приложенной механической нагрузки. Следовательно, в обеспечении требуемой адгезионной прочности, соответствующей конкретным конструкциям, существует определенная степень свободы. Наличие пор и влаги на поверхности раздела, так же как и повышение температуры, ослабляют адгезионную прочность, в результате чего снижаются жесткость и прочность композитов. Циклическое нагружение почти не сказывается на онижении адгезионной прочности. Показатель расслоения является критерием увеличения локальных сдвиговых деформаций в матрице и модуля сдвига композита. Этот параметр может быть использован при выборе компонентов материалов с заданной адгезионной прочностью на поверхности раздела, И наконец, следует отметить, что состояние данной области материаловедения  [c.83]

Второе принципиальное положение, на которое обращено внимание в курсе, состоит в усилении информации (главы IV, VIII, XIX) о самом материале конструкции. Там, где это было мыслимо, применяются понятия физики твердого тела, однако в основном используется феноменологический подход. Эта часть курса в определенном смысле пересекается с предметом физики твердого тела, кристаллографии, материаловедения, включая сюда вопросы технологической прочности. Попали в поле зрения и новые, нетрадиционные материалы, и новые условия работы материалов (радиационные эффекты при высоких уровнях облучения, очень высокие и очень низкие температуры, высокие скорости нагружения, высокие давления и т. п.).  [c.13]

Принцип построения справочника может быть разным по элементам, химическим соединениям, свойствам, назначению и т. д. Авторы останоавлись на смешанном принципе распределения собранных сведений — в соответствии с общепринятой классификацией материалов (где она существует) и по области применения. Такой подход представляется целесообразным. Некоторые материалы благодаря своим специфическим свойствам используются во вполне определенных областях, что облегчает задачу подготовки целевого справочника. С другой Стороны, в связи с глубоким взаимопроникновением отдельных направлений науки характерно широкое использование достижений материаловедения в различных областях техники. Поэтому в этих случаях целесообразно сосредоточить внимание на природе данных материалов.  [c.4]

Для изучения физических и механических процессов, происходящих при выполнении ряда технологических операций в различных областях техники (химическая технология, материаловедение, обогащение руд), достаточно общими моделями могут служить многофазные среды (взвеси мелкодисперсных фаз, например твердых частиц и пузырьков в жидкостях). Осуществление многих технологических процессов связано с созданием определенных форм относительного движения фаз многофазных сред. Например, для получения суспензий, эмульсий, а также интенсификации некоторых химических реакций, происходящих между мелкодисперсными и несущими фазами среды, необходимо организовать перемешивание фаз в других случаях (выделение и локализация вредных примесей при плавке и кристаллизации металлов, тонкая очистка топлива и т. п.) требуется разделить фазы. Для некоторых более тонких технологических процессов (зонная очистка переплаапяемых металлов, получение изделий с регулируемой плотностью, адгезионное и многослойное литье, производство композиционных материалов) необходимо реализовать более сложные формы движения, при которых некоторые элементы многофазной среды совершают колебательные движения, другие— монотонные, односторонне направленные движения, а третьи удерживаются в определенных локальных областях пространства, занятых многофазной средой.  [c.100]


С развитием триботехнического материаловедения возник ряд новых проблем анализа структуры и свойств поверхностей, прогнозирования их эксплуатационных характеристик. С одной стороны, многие методы поверхностной обработки затрагивают слои микронной и субмикронной толщины. Все более широкое распространение получают такие методы воздействия, которые приводят к формированию метастабильных, неравновесных структур, непригодных для исследования стандартными методами и методиками. Достаточно упомянуть метастабильные растворы и фазовые выделения при ионной имплантации, сервовитную пленку, возникающую при избирательном переносе, специфические по структуре слои, возникающие при реализации эффекта аномально низкого трения, столбчатую структуру ионно-плазменных покрытий и т. д. С другой стороны, в последние годы открыты новые физические явления, протекающие вблизи межфазных границ раздела и влияющие на фрикционные свойства материалов. Двумерная поверхностная диффузия характеризуется небольшой энергией активации и в определенных условиях существенно влияет на формирование поверхностной топографии, схватывание, распространение смазочной среды. Поверхностная сегрегация может радикальным образом изменить адгезионные и адсорбционные характеристики контактирующих материалов. Известно [12], что в сплаве медь — алюминий однопроцентной добавки А1 достаточно для того, чтобы при незначительном нагреве ( 200" С) произошла сегрегация алюминия к поверхности. В результате наружный слой сплава состоит исключительно из атомов алюминия. Сегрегация бора к межзеренным границам борсодержащих сталей, происходящая при неправильно выбранных режимах термообработки, вызывает резкое охрупчивание материала. Поверхностная сегрегация атомов свинца рассматривается как причина хорошей обрабатываемости свинцовистых сталей.  [c.159]

Традиционный подход к синтезу структур и материалов, принятый в материаловедении, связан с учетом закономерностей физико-химических процессов, установленных для макромира применительно к квази-закрытым системам. Однако синтез структур отвечает сугубо неравновесным процессам, развивающимися при наличии высоких градиентов температур, напряжений или химического состава. В этих условиях система становится открытой, что требует использования принципов термодинамики неравновесных процессов и нелинейной динамики (синергетики) структурообразования. Для таких систем характерны процессы самоорганизации диссипативных структур [5,6], позволяющие сохранять целостность системы путем самоорганизации более устойчивой структуры, взамен старой,+ потерявшей устойчивость. Реализуемый процесс самовыбора устойчивой структуры при достижении неустойчивого состояния системы, является универсальным и относится к классу самоуправляемого синтеза структур. В этом случае роль внешнего фактора сводится лишь к поддержанию энергии в системе на определенном уровне, отвечающем критическому значению управляющего параметра, при достижении которого возможен процесс самоуправления.  [c.61]

Длительное время приложение идей синергетики в материаловедении носило качественный характер. Скачек произошел в результате использования фрактально-синергетического подхода к математическому описанию процесса эволюции сложных систем с использованием критических значений параметров мультифрактальных структур. В соответствие с методом мультифрактальной параметризации при анализе эволюции системы можно рассматривать показатели фрактальной (мультифрактальной) структуры, определенные методом мультифрактальной параметризации (МФП) для двух критических состояний изучаемого вещества, отвечающих нижней (D.) и верхней (Di) границам адаптации структуры к нарушению симметрии системы путем самоор-ганзации мультифрактальных множеств. Использование алгоритма самоуправляемого синтеза структур позволяет для данной системы рассчитывать меру Ат адаптивности системы к нарушению симметрии, меру устойчивости симметрии Д и вид m обратной связи, контролирующей процесс эволюции системы. Этот метод рассмотрен в [30]. Кабал-дин Ю.К. и др. развили интеллектуальный подход к процессам разрушения и синтеза материалов [31]. Для установления интеллекта ме-  [c.178]

В материаловедении прорыв связан с введением представлений о симметрии фрактальных структур и возможностью путем мультифрак-тальной параметризации извлекать информацию о переходах симметрия -дисимметрия с определением количественных показателей, контролирующие эти переходы [58].  [c.193]

Машинное моделирование процессов, протекающих в материалах, уже широко применяется в физике твердого тела и материаловедении. Вьщеляются такие методы машинного моделирования, как динамический, вариационный, картин изображений, Монте-Карло [10, 224]. Выбор метода или группы методов определяется спецификой исследуемых процессов на различных структурных уровнях. Например, динамическое моделирование применяется при исследовании разрушения цепочки атомов в результате флуктуации в их колебаниях [100-103]. Вариационный метод моделирования используется для определения равновесных конфигураций дефектов на атомном уровне, в частности при радиационном повреждении металлов [224]. Моделирование развития картин изображения используется для исследования взаимодействия диспокаций с различными объектами [225]. Применение метода Монте-Карло наряду с разработкой сетчатых моделей, имитирующих надмолекулярную структу-  [c.18]

В целом, оценйвая достижения в области имитационного моделирования на ЭВМ процессов разрушения композиционных материалов, можно отметить, что, несмотря на относительно небольшое количество работ в этом направлении, применение машинного моделирования позволяет ставить и решать весьма разнообразные и актуальные задачи, связанные с прогнозированием прочностных свойств композитов в различных условиях нагружения. Определенные трудности в развитии данного направления связаны, по-видимому, с тем, что оно синтезирует, включает в себя как проблемы материаловедения, так и проблемы механики в силу необходимости з ета -и анализа реальной микроструктуры материала. Третьим необходимым компонентом развития описанных подходов является разработка и применение кибернетических методов, г.е. непосредственно разработка алгоритмов и приемов имитационного моделирования на ЭВМ сложных процессов,  [c.145]

За последние годы наука о прочности, как один из разделов материаловедения и физики твердого тела, претерпела огромные изменения. Достаточно назвать экспериментальное достижение теоретической прочности в нитевидных кристаллах, широкое применение теории дислокаций для понимания атомного механизма деформации и разрушения и многое другое. Однако ни один из разделов учения о прочности не претерпел столь резких принципиальных изменений, как разрушение. Этих изменений много и они разные, и может быть наиболее важным является то, что центр тяжести переносится все больше на исследование предстадий полного разрушения. Введены и вводятся новые методы оценки разрушения. Однако прикладная линия пока мало меняется расчеты большей частью относятся к упругой области, реже — к пластической и особенно редко к области разрушения в большинстве случаев испытания проводятся при осевом растяжении с определением пределов прочности, текучести, удлинения, сужения и реже при других испытаниях с определением пределов усталости, ползучести, чувствительности к надрезу, трещине и некоторых других характеристик. Это малое изменение прикладной линии вызвано объективными причинами недостаточной разработкой новых методов, сложностью трактовки и отсутствием в некоторых случаях надежных критериев.  [c.5]

Учебник составлен с учетом того, что перед изучением курса специальной технологии учащиеся уже получили определенный минимум знаний в области общего материаловедения, технологии машиностроения, правил технического черчения, системы допусков и посадок. Учитывается также, что читатели владеют производственными навыками в объеме общеслесарного курса.  [c.4]

Широкое применение изделий из стеклопластиков в народном хозяйстве настоятельно требует разработки научно обоснованньк методов определения оптимальных условий их использования. В соответствии с требованиями современной техники изделия из стеклопластиков должны иметь точно определяемый допустимый срок эксплуатации. Поэтому прогнозирование эксплуатационного поведения армированных пластиков на основе лабораторных исследований является одной из актуальных задач материаловедения. В настоящее время остро ощущается необходимость обобщения и систематизации накопленного материала по химическому сопротивлению композитов, выявления общих закономерностей кинетики сорбции и снижения физико-механических, диэлектрических и других характеристик, исследования взаимосвязи структуры армированного полимера и его проницаемости, а также стабильности исходных показателей в условиях воздействия рабочих сред. Решение этих вопросов открывает возможности для надежного прогнозирования поведения стеклопластиков в эксплуатационных условиях и разработки инженерных методов оценки долговечности изделий на их основе.  [c.9]


Термопластичные полимеры в стеклообразном состоянии характеризуются низкой сопротивляемостью прорастанию трещин при ударном нагружении. Этот существенный недостаток можно устранить пластифицированием низкомолекулярными веществами или смешением с полимерами повышенной упругости. Однако в обоих случаях повышение ударопрочности сопровождается снижением жесткости, предела пропорциональности и теплостойкости материала. Удачной попыткой избежать этих осложнений явилось создание эласхифицированных и наполненных термопластов. В первом случае повышенная ударопрочность достигается диспергированием эластомера в непрерывной матрице из термопласта, во втором — наполнением волокнами различного типа. Эффект эластифицирования обеспечивается лишь в том случае, когда на границе контакта термопласт — эластомер создан переходный слой определенной толщины, обеспечивающий устойчивость текстуры композиционного материала и прорастание трещин в частицы эластомера. Хотя пока удалось создать небольшое число эластифицированных термопластов, значение этих материалов и перспективность такого направления в полимерном материаловедении исключительно велики. Анализу свойств этих материалов и их взаимосвязи с составом посвящена IV глава.  [c.5]

Во второй главе об ждается подход к компьютерному материаловедению полимеров на ат0мн0-1м0ле лярн0м уровне, основанный на методе инкрементов. Рассчитаны инкременты различных атомов и их основных групп. Приведены основные физические представления о структуре макромолекул полимеров и определяющих ее параметрах. Дана методика расчета такой важной характеристики структуры полимера, как коэффшщент молекулярной упаковки. Установлена связь между свободным объемом полимера, коэффищ -ентом молекулярной упаковки и параметрами его пористой структуры. Для экспериментального определения характеристик микропористой структуры полимеров использован метод аннигиляции позитронов, с использованием которого выявлены структурные изменения в полимерах при их релаксации.  [c.15]


Смотреть страницы где упоминается термин Материаловедение, определение : [c.476]    [c.476]    [c.13]    [c.3]    [c.11]    [c.9]    [c.4]    [c.284]    [c.270]    [c.370]   
Металлургия и материаловедение (1982) -- [ c.11 ]



ПОИСК



Материаловедение



© 2025 Mash-xxl.info Реклама на сайте