Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициенты трения жидких металлов

В начальный момент при сварке трением коэффициент трения максимален. Соответственно затраты мощности и тепловыделение в месте трущегося контакта возрастают. В первый период движения коэффициент трения падает и выделение теплоты уменьшается, затем при нагреве до 700...800 К испаряются и выгорают жировые пленки и коэффициент трения растет. Одновременно начинает проявляться местное схватывание соединяемых поверхностей, что вызывает интенсивное тепловыделение. С повышением температуры число участков схватывания растет, а их прочность снижается. Снижается также и тепловыделение из-за уменьшения коэффициента трения вследствие появления на трущихся поверхностях жидкого металла, играющего роль смазки. В этот период устанавливается квазиравновесное состояние, затем следуют резкое торможение и осадка.  [c.137]


Сальник в трубопроводной арматуре препятствует проходу рабочей среды в атмосферу через зазор в подвижном соединении шпинделя с крышкой. Во многих случаях неудовлетворительная работа арматуры связана с плохим техническим состоянием сальника, поэтому материал набивки сальника должен выбираться обоснованно. Материал должен обладать следующими свойствами иметь высокие упругость, физическую стойкость при рабочей температуре, химическую стойкость против действия рабочей среды, износостойкость и возможно малый коэффициент трения. В качестве набивочных материалов в отечественной арматуре для АЭС в основном применяются асбест с графитом, асбест с фторопластом, фторопласт и некоторые другие материалы. Наиболее часто используются асбестовый плетеный шнур квадратного или круглого сечения. Целесообразно применение набивки из заранее приготовленных и отформованных колец. В арматуре первого (реакторного) контура с жидкометаллическим теплоносителем применение набивок, содержащих графит, недопустимо, так как последний, попадая в жидкий натрий, вызывает при высокой температуре науглероживание металла оборудования контура, способствуя его охрупчиванию.  [c.35]

Промышленные жидкие и консистентные смазки, легко адсорбирующиеся на поверхности других металлов, на титане не эффективны. Коэффициент трения при работе с этими смазками такой же, как и при сухом трении.  [c.77]

Разработан новый способ нанесения многослойных покрытий с заданным составом и свойствами, которые формируются за счет последовательного нанесения различных покрытий со специфическими свойствами и собственным целевым назначением. При этом представляется возможным получить комплекс свойств у покрытий, сочетающих высокую износостойкость и антифрикционные свойства. Основным видом многослойного покрытия является карбидное покрытие с последующим электролитическим осаждением на нем чистых] металлов и нанесением антифрикционных пленок. При температурах 700—800° С мягкие легкоплавкие металлы, находясь в контакте с твердыми покрытиями, размягчаются и даже плавятся, образуя жидкий слой, который быстро заполняет все поры твердого слоя покрытия, частично диффундируя в поверхностный слой металла (подложки). Так например, коэффициент трения покрытия из карбида вольфрама с последующим нанесением па него покрытия серебра с дисульфидом молибдена при длительной работе в реальной конструкции не превышал 0,18. Результаты лабораторных и производственных испытаний показали, что износостойкость и антифрикционные свойства покрытия сложного состава выше на 20—25%, чем обычных составов.  [c.48]


При турбулентном движе- и жидкости. Практически часто наблюдаемом при заливке жидкого металла в литейные формы, кроме сил внутреннего трения большое значение приобретают силы инерции элементарных частиц, пропорциональные плотности металла. Поэтому при прочих равных условиях турбулентное движение жидкого металла определяется отношением т]в/рм, которое имеет большое значение для практики и определяется как коэффициент кинематической вязкости.  [c.71]

Твердые смазки необходимы для улучшения антизадирных свойств и повышения износостойкости порошковых материалов. Механизм их действия зависит от природы присадки. Так, легкоплавкие металлы в процессе работы выдавливаются на поверхность трения в виде тонкой пленки, которая может быть и жидкой, обеспечивая плавное и устойчивое скольжение (что особенно важно при повышенных температурах, когда металлическая матрица обладает большой склонностью к схватыванию с контртелом и заеданию). Например, свинец, плавящийся в результате разогрева фрикционного материала при торможении, повышает его прирабатываемость, сопротивление заеданию и износу и способствует плавному торможению. С увеличением содержания свинца механические свойства порошкового материала снижаются, а коэффициент трения и износостойкость повышаются. При работе узла трения с жидкими смазками свинец взаимодействует с органическими жирными кислотами, содержаш,имися в минеральных маслах, с образованием металлических мыл, что улучшает смазочную способность минерального масла.  [c.60]

В работе [147] указывается, что при горячей штамповке черных металлов с водным раствором (20 1) высокотемпературного жидкого стекла с графитом (1 2 по массе) коэффициент трения составляет 0,14-г-0,20 при использова-  [c.107]

Инструмент при прессовании работает в очень тяжелых условиях, при высоких давлениях и температурах. Износ его уменьшают применением смазочных материалов, которые снижают коэффициент трения на поверхности контакта матрицы и деформируемого металла. В качестве смазки применяют графит дисульфид молибдена и специальные виды жидкого стекла. Применение жидкого стекла при прессовании труб позволяет уменьшить трение и увеличить скорость выдавливания, предохраняя в то же время инструмент от перегрева.  [c.302]

Исследования проводили на установках, позволяющих создать любую рабочую среду (газовую или жидкую). В результате исследований, выполненных А. К- Прокопенко, установлено, что защитная металлическая пленка на трущихся деталях может образоваться в маслах, содержащих сотые доли процента медьсодержащих присадок. При этом коэффициент трения и износ могут понижаться, хотя на поверхностях трения визуально и оптическими методами защитного слоя металла не обнаруживается. Было высказано предположение, что ряд металлоплакирующих присадок на основе медь-органических соединений образует на поверхностях трения и частицах износа тонкую (несколько моноатомных слоев) пленку меди. В этом случае частицы износа, представляющие собой сплавы железа, покрываются медью и в среде поверхностно-активного смазочного материала работают аналогично частицам меди, находящимся в глицерине при трении пары сталь—медь. Следовательно, пара трения работает в режиме ИП. Наличие меди на рабочих поверх-  [c.316]

Смазка жидкой пленкой. Как установил Рейнольдс в 1886 г., разделение металлических поверхностей клиновидной пленкой жидкости может дать очень низкие коэффициент трения и интенсивность износа. Вместе с тем весьма сомнительно, чтобы жидкие пленки СОЖ могли служить смазкой в процессе резания металлов.  [c.86]

Твердые смазочные материалы имеют низкие коэффициенты трения (например, графит - 0,04, дисульфид молибдена - 0,03Х выдерживают высокие температуры и давления. Основные трудности применения твердых смазочных материалов состоят в изыскании наиболее эффективных способов введения их в зону обработки. Поэтому твердые смазки нашли применение в основном в качестве наполнителей жидких, газообразных и пластичных СОТС. К недостаткам применения твердых смазок следует отнести также невозможность их повторного использования. Твердые смазки следует применять в случаях, когда применение СОЖ затруднено или недопустимо. Например при обработке отверстий малого диаметра, когда проникновение жидкой среды в зону резания затруднено при нарезании резьбы в металлах, склонных к сильному налипанию на режущий инструмент, на станках, не оснащенных системой циркуляции СОЖ и др.  [c.459]


Указанные свойства пленки меди, зафиксированные после раскрытия контактной пары, подтверждают высказанные ранее представления [16], согласно которым в процессе трения материал тонких поверхностных слоев находится в состоянии, подобном расплавленному. Полученное авторами значение периода кристаллической решетки пленки меди согласуется с результатами работы [83], в которой такое же пониженное значение периода решетки меди получено в результате быстрой закалки ее из жидкой фазы. Состояние металла, подобное жидкому, обеспечивает легкое взаимное перемещение контактирующих поверхностей и малые значения коэффициента трения и износа. Трение меди о сталь в условиях избирательного переноса можно уподобить скольжению твердого тела по льду, при котором низкий коэффициент трения обеспечивает пленка расплавленного материала.  [c.114]

Смазка покрывает тонким слоем поверхность металла. Эта пленка благодаря молекулярному сцеплению с металлом не вытесняется высоким давлением и, таким образом, предотвращает трение металла о металл (сухое трение), заменяя его жидким трением (трением смазки). Коэффициент трения смазанных поверхностей в 50 раз и более ниже, чем несмазанных.  [c.229]

Цианирование — процесс насыщения поверхностного слоя азотом и углеродом. Цианированный слой имеет повышенную теплостойкость и износостойкость при меньшем налипании металла, более низкий коэффициент трения. Кроме того, он повышает предел выносливости и снижает растворимость стали в жидком силумине. Последнее делает цианирование незаменимым процессом для форм литья под давлением алюминиевых сплавов. Разновидности цианирования жидкостное (в расплавленных слоях калия, натрия), твердое (в смеси 60—70% древесного угля и 30—40% желтой кровяной соли) и газовое низкотемпературное. Ценность газового низкотемпературного цианирования состоит в том, что оно может выполняться после термической обработки и окончательного шлифования. Благодаря этому газовое цианирование (при 550—570° С) применяют особенно часто для деталей пресс-  [c.169]

Коэффициент [х учитывает гидравлические потери при движении жидкого металла в каналах литниковой системы и в форме. Потери напора зависят от трения металла о стенки каналов и формы (т. е. от сечения и длины каналов и состояния их поверхности), вязкости самого металла, сопротивления воздуха, заполняющего полость формы, образующихся в форме газов и т. д. Практически для тонкостенных сложных отливок коэффициент 6 163  [c.163]

Когда смазка переходит в жидкое состояние, коэффициент трения сохраняет постоянное значение в широком интервале температур. Это справедливо для инертных смазок. Если смазки наделены ярко выраженными адсорбционными свойствами (полярные углеводороды) или вступают в химическое взаимодействие с металлом,то зависимость коэффициента трения от температуры изменяется. Наиболее эффективной при высоких температурах оказывается смазка, вступающая  [c.255]

Рис. 7. Коэффициенты трения стали и бронзы в среде жидких металлов. Рис. 7. <a href="/info/255622">Коэффициенты трения стали</a> и бронзы в <a href="/info/28638">среде жидких</a> металлов.
При работе смазочных материалов в глубоком вакууме энергия активации процессов их старения, как правило, равна или ниже таковой при работе смазок в атмосферных условиях. Например (см. табл. 6.3 и 6.4), для углеводородных масел коэффициенты В и, следовательно, энергии активации при трении ( тр) в вакууме и на воздухе составляют одну и ту же величину, а для остальных испытанных жидких смазочных материалов тр в вакууме за редкими исключениями ниже, чем на воздухе. Понижение тр при испытании в вакууме можно отнести за счет каталитического влияния ювенильной поверхности металла, более интенсивного воздействия тепловых импульсов в зоне трения, пониженной энергии активации процессов испарения, изменения характера трибохимических процессов и других факторов.  [c.108]

Так для большинства металлов коэффициенты диффузии при комнатной температуре не превышают 10"1 , а в жидком состоянии составляют не менее 10 , то процессы переноса оказываются возможными при температурах, приближающихся к температуре плавления Тз - Как известно, повышенная диффузионная активность атомов возникает уже ири температуре рекристаллизации (Гг). Поэтому в дальнейшем будем считать, что перенос металлов возможен при температурах Т в интервале от до Тз- Заметим, что переносу металлов будут благоприятствовать процессы пластической деформации, неизбежно возникающие в условиях трения и увеличивающие скорость диффузии.  [c.46]

Фторопласт-4 обладает высокими диэлектрическими свойствами и исключительной химической стойкостью к минеральным и органическим кислотам, щелочам, органическим растворителям и другим агрессивным средам. Не стоек к расплавленным щелочным металлам и их растворам в аммиаке, элементарному фтору и трехфтористому хлору при повышенных температурах. При температуре выше 327° С набухает в жидких фторуглеродах, при 20° С — в фреонах.. Смачивается, по абсолютно не набухает в воде. Недостаточно стоек к радиационному излучению. При достаточной прочности, при длительном нагружении подвержен ползучести. Обладает небольшим коэффициентом трения п поэтому используется в качестве антифрикционной основы для изготовления сложных металлофторопластовых подшипников (см. с. 223).  [c.262]


Для стали Х18Н9 без покрытия в среде аргона с примесью паров натрия коэффициент трения и в особенности износ выше, чем в среде жидкого натрия. Поверхности после трения в аргоно-нат-риевой среде в течение полутора часов значительно сильнее повреждены, чем после пятичасового опыта в жидком натрии. Стальные образцы с покрытиями имеют наименьший коэффициент трения в среде жидкого натрия, а наименьший износ — в арго-но-натриевой среде. Н идкий натрий можно рассматривать как смазочную и охлаждающую среду, разделяющую трущиеся поверхности и облегчающую условия трения. Благодаря адсорбционному эффекту [2] он значительно снижает поверхностную энергию трущихся тел, облегчает пластическую деформацию и снижает потери на трение. Благодаря этому, а также улучшению условий теплоотвода смазка жидким металлом благоприятна.  [c.75]

Применение покрытий при горячей деформации металла должно по возможности обеспечивать снижение усилий штамповки и прессования заготовок, износа инструмента, теплоизоляцию заготовок и инструмента, высокое качество поверхности получаемых полуфабрикатов. Защитные покрытия, например содержащие стеклофазу, обладают при высоких температурах свойством уменьшать коэффициент трения и износ трущихся поверхностей заготовок и инструмента (штампов, матриц, фильер и т. п.). Это свойство проявляется, когда между трущямися поверхностями имеется достаточно толстый слой покрытия, содержащего жидкую фазу. Смазочное действие покрытий в этом случае определяется жидкостным трением и подчиняется законам гидродинамики. Основным параметром, определяющим смазочное действие жидкости в условиях, когда внешнее трение переходит во внутреннее трение жидкости, является вязкость жидкости. Смазочное действие покрытий определяется тем, что они разъединяют трущиеся поверхности и способствуют переходу от внешнего трения к внутреннему вследствие вязкого или пластичного течения слоев самих покрытий. В некоторых работах отмечалось, что толщина слоя стеклосмазки, а не вязкость определяет ее смазочное действие. Покрытия, главное назначение которых состоит в защите от окисления при нагреве, могут уменьшать трение, износ инструмента, усилия при деформировании металла. Одновременно с указанным защитно-технологические покрытия повышают качество поверхности заготовок, способствуют получению более однородных механических свойств, служат как теплоизолятор, уменьшают скорость охлаждения заготовок и разогрева инструмента.  [c.113]

Чаще всего такие покрытия применяют в качестве тепловых и электрических барьеров, для защиты от износа и эрозии, с целью предохранения поверхности металлов от взаимодействия с газовыми и жидкими агрессивными средами, особенно при высоких температурах. Нанесение плотного покрытия на основе окиси алюминия на детали насосов (валы, сальники, втулки, крыльчатки) обеспечивает их твердость, химическую стойкость, низкий коэффициент трения, стойкость против термического воздействия. Напыление окиси циркония на матрицы для протяжки молибдена повыщает срок их службы в 5—10 раз. Плазменные покрытия из окиси алюминия и циркония увеличивают стойкость кокильных форм, изложниц, тиглей, литейных ковщей. Магнезитохромитовые сводовые кирпичи с плазменным покрытием из 2гОз толщиной 0,1—0,2 мм выдержали без разрушения 100 плавок, в то время как кирпичи без покрытия износились на 100 мм. С успехом применены плазменные покрытия для увеличения срока службы фурм доменных печей и труб для выдувки при горячем ремонте мартеновских печей. Поданным работы [121], керамические и керметовые покрытия применяют для защиты ответственных деталей воздушно-реактивных двигателей и ракет.  [c.343]

Смазочные материалы применяются для уменьшения трения, возникающего на поверхности соприкасающихся тел при движении их относительно друг друга. Большое трение приводит к нагреву изделий, уменьшает точность обработки, увеличивает износ металла, понижает производительность обработки, уменьшает срок службы изделий и увеличивает расход электроэнергии. Смазка покрывает тонким слоем поверхность металла. Эта пленка благодаря молекулярному сцеплению с металлом не вытесняется высоким давлением и таким образом предотвращает трение металла о металл (сухое трение), заменяя его жидким трением (трением смазтси). Коэффициент трения смазанных поверхностей в 50 и более раз ниже, чем несмазанных кроме того, смазка предохраняет металл от коррозии. Благодаря этому уменьшается износ поверхности и увеличивается срок службы изделия.  [c.224]

Особенно изнашивание графитовых опор увеличивается в жидких средах (в 5—10 раз) по сравнению с сухим трением при одновременном уменьшении коэффициента трения (0,01—0,1 вместо 0,1—0,3). Так, проведенные испытания вертикального герметичного электронасоса с подшипниками и подпятником из графита, работающими в воде прн скоростях скольжения 7 м с, показали неудовлетворительное состояние шеек вала из стали 12Х18Н10Т (глубокие риски и высокий износ графитовых вту лок). В условиях смазывания водой или другими жидкостями более целесообразно применять пропитанные металлами углеродные материалы (табл. 12). Физико-механнческпе свойства антифрикционных углеродных пропитанных материалов даны в табл. 13. Недостатки физико-механических свойств углеграфитовых материалов устраняют путем рационального конструирования графитовых опор. Так, при нагреве графитовых под-  [c.51]

Основным элементом неавтоматического ФС является ПТ, в которой осевая нагрузка Рнж. создаваемая нажимным механизмом, преобразуется в момент трения Мт, в результате чего крутящий момент Мд передается от ведущих частей к ведомым. ПТ образуется поверхностями нажимного диска и накладки, маховика и накладки, промежуточного диска и накладки. Следовательно, одинаково важно знать как свойства металлов (нажимного диска, маховика, промежуточного диска), так и свойства материалов накладки. Свойства последних, часто называемых фрикционными материалами (ФМ), обычно представлены менее полно, так как свойства металлов, в частности чугунов, которые для этого случая наиболее часто применяются, хорошо известны. В отечественной и зарубежной практике лабораторные испытания ФМ являются основным видом заводского контроля, т. е. относятся к категории приемосдаточных и контрольных. Здесь чаще всего определяют так называемые физико-механические показатели по ГОСТ 1786—80 твердость НВ по Бриннелю коэффициент трения /т/ стабильность /т при изменении температуры, % износ I, мм теплостойкость изменение массы в жидких средах X, % удельную работу, кДж/м .  [c.257]

По нашему мнению, разделение трения на сухое и граничное в большой мере условно, так как внешнее трение возможно только при наличии положительного градиента механических свойств по глубине, поэтому поверхностный слой должен быть отличен от нижележащих. Всякое внешнее трение является граничным, так как при нем деформации сосредоточены в тонком поверхностном слое. В противном случае, например при чистых металлических поверхностях, всегда возникает внутриметал-лическое трение (глубинное вырывание—5-й вид нарушения фрикционной связи). Для предотвращения этого необходимо, чтобы поверхности были разделены пленкой (оксидной, сульфидной и др.), которая должна предохранять нижележащие слои от разрушения. Однако силы молекулярного взаимодействия между этими пленками, тоже являющимися твердыми телами, все же достаточно велики, что приводит к высоким значениям коэффициента трения и соответственно к избыточному выделению тепла. Для понижения трения применяют жидкую смазку. При малой толщине слоя, смазка теряет свои объемные свойства, в частности теряет подвижность вследствие влияния молекулярного поля твердого тела. Жидкость, вступая в физическое и химическое взаимодействие с металлом, сильно деформированным при трении, резко меняет его свойства. Комплекс процессов, происходящих в тонких поверхностных слоях измененного материала и разделяющем их тонком слое жидкости, обусловливает явление граничного трения.  [c.237]


Химическое меднение. Химическое меднение является одним из немногих способов получения композиционных материалов на основе меди и его сплавов, армированных углеродным волокном. Введение углеродных волокон в медные сплавы целесообразно в некоторых случаях, когда требуется материал с высокими элек-тро- и теплопроводностью, близкими к соответствующим характеристикам меди, но более прочный, с более низким температурным коэффициентом линейного расширения. Кроме того, он может служить и хорошим материалом для высокопрочных, самосмазываю-щихся ПОДЦ1ИИНИКОВ трения. Часто химическое меднение исполь-зуют для улучшения смачиваемости углеродных волокон или нитевидных кристаллов в процессе изготовления композиционных материалов на основе алюминиевых сплавов методом пропитки жидким расплавом, либо в качестве подслоя на этих унрочните-лях, образующего плавящуюся эвтектику в контакте с металлом матрицы, используемым в виде тонких фольг при горячем прессовании.  [c.186]

Удары шариков по обрабатываемой поверхности происходят через жидкую пленку, которая практически устраняет трение между шариками и металлом. Это способствует более равномерному распределению нагрузки в зоне контакта шариков и ПС, снижает выделение тешта и трение, а жидкость частично охлаждает обрабатываемую поверхность. Коэффициент полезного действия процесса ГДУ и ПГДУ более высокий, чем ПДУ, т.к. непосредственно на пластическую деформацию ПС расходуется большая доля кинетической энергии шариков.  [c.219]

Влияние контактного трения на процесс обжима. Контактное трение при обжиме играет отрицательную роль, так как увеличивает усилие деформирования, перегружая тем самым зону передачи усилия. Несмотря на то что давление инструмента на поверхность заготовки сравнительно невелико и обычно не превышает (0,05...0,1) 05, суммарное значение сил трения довольно значительно вследствие большой площади контакта матрицы и заготовки. Уменьшив силы трения, можно уменьшить коэффициент обжима. Основными способами уменьшения сил трения являются правильный выбор смазок и изменение характера нагружения. Наряду с традиционными жидкими и консистентными смазками в последнее время используют смазки в виде эластичных пленок (полиэтиленовых, цапон-лака и др.), а также предварительно покрывают поверхность заготовки тонким слоем металла с высокой пластичностью. Хорошими смазывающими свойствами обладают коллоидальный мелкодисперсный графит  [c.62]

Как видно по единице физической величины Дж/с)/см — это динамическая вязкость или (по друг й ерминологии) внутреннее трение. Эта характеристика часто используется и ее численные значения определены для многих веществ, в том числе и металлов, но только для жидкого или даже парообразного состояния. Для металлов в твердом состоянии опытных значений коэффициента нет. Определим эту характеристику расчетным путем, используя для этой цели принцип механического подобия.  [c.30]


Смотреть страницы где упоминается термин Коэффициенты трения жидких металлов : [c.357]    [c.348]    [c.81]    [c.284]   
Жидкости для гидравлических систем (1965) -- [ c.318 ]



ПОИСК



Жидкие металлы

Коэффициент трения

Металлы Коэффициенты трения

Трение жидкое

Тренне коэффициент



© 2025 Mash-xxl.info Реклама на сайте