Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчеты на прочность деталей с трещинами

Поэтому наряду со стандартными расчетами на прочность для ответственных конструкций начинают выполнять расчеты на прочность деталей с трещинами и обеспечивают условия их нераспространения. При этом возможны различные подходы  [c.191]

РАСЧЕТЫ НА ПРОЧНОСТЬ ДЕТАЛЕЙ С ТРЕЩИНАМИ  [c.203]

Наибольшее распространение в расчетах на прочность деталей с трещинами получил расчет по силовому критерию коэффициента интенсивности напряжений  [c.203]


ПРИМЕРЫ РАСЧЕТОВ НА ПРОЧНОСТЬ ДЕТАЛЕЙ С ТРЕЩИНАМИ  [c.208]

Для оценки точности расчетов на прочность деталей с трепщна-ми по методу сечений были проведены испытания на разрушение рассматриваемых деталей (автосцепок) с трещинами с записью диаграмм разрушения [2].  [c.221]

Назрела также необходимость создания метода расчета на прочность деталей конструкций на стадии разрушения (т. е. с допущением макроскопических трещин), который может быть использован в работе конструкторских бюро.  [c.11]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]

При расчетах деталей с трещинами (которых может и пе быть, но существование которых мысленно допускается) необходимо иметь некоторый запас надежности на случай их возникновения. Если, например, имеется материал с Кс= = 2000 Н/мм и он надежно работает при запасе прочности п = Ов/Отах = 3, ТО применение другого материала, имеющего = = 4000 H/мм дает возможность снизить запас прочности (ов — предел прочности или временное сопротивление). До какой величины он может быть снижен, зависит от условий работы например от числа повторений нагрузок и их уровня, величины запаса упругой энергии системы, наличия коррозионных сред й других факторов. Количественное определение степени снижения запаса прочности должно явиться задачей методов расчета на прочность но стадии разрушения, один из возможных вариантов которого представлен в 34.  [c.130]


Значительный интерес представляет определение таких значений т, при которых деталь с трещиной оказывается в области нечувствительности к трещине (при этом п = Па, а = 1, разрушение пластическое). На примере испытания малоуглеродистой стали при комнатной температуре можно показать возможность появления области нечувствительности материала к трещине и определить пороговые значения т [35]. Оказалось, что при т<-п прочность тела с трещиной падает, а при т п прочность тела не зависит от длины трещины (при условии, что она меньше или равна допускаемой согласно расчету). Таким образом, был получен ответ на непростой вопрос о допускаемой длине трещины при пластическом разрушении без потери несущей способности. Следует, однако, не забывать о возможности изменения условий нагружения, приводящих к охрупчиванию. В этом случае желательно проводить расчет по Ирвину с введением вязкости разрушения К,с. Допустимая длина трещины, полученная из пластического расчета, должна быть меньше критической, следующей из условия К = К, .  [c.294]

При использовании значений /4 ,5 или /С], определенных путем испытаний плоских образцов, при расчете на прочность реальных деталей или конструкций необходимо вводить поправки на толщину и форму рассчитываемой стенки. Необходимо также учитывать, что в реальных деталях исходная трещина не распространяется на всю толщину стенки, как в тонких образцах.  [c.369]

Точное решение задачи по определению аналитического выражения Kip (левая часть условия прочности) для реальных деталей весьма затруднительно (решается она методами теории упругости с использованием математического аппарата комплексных переменных). Поэтому в настоящее время лишь для некоторых расчетных схем получены аналитические выражения КИН инженерными методами, что открывает возможность вьшолнения практических расчетов на прочность элементов конструкций с трещинами.  [c.194]

Механика разрушения уже достигла довольно высокого уровня развития и позволяет решать задачи расчета на прочность сложных деталей с трещинами. Рассмотрим пример такого расчета.  [c.213]

Создание такой модели требует проведения большого объема предварительной работы, в первую очередь, по выявлению комплекса прочностных свойств в широком диапазоне температур, в том числе стандартных — предела текучести, предела прочности <т истинного сопротивления разрыву л, а также характеристик механики разрущения — предельного коэффициента интенсивности напряжений для деталей с трещинами и коэффициента интенсивности деформаций — критерия квазихрупкого разрушения деталей с трещинами. Необходимы также параметры кривых усталости для расчета долговечности на этапе зарождения трещины и данные по скорости роста трещины. Кроме того, определяются характеристики условий эксплуатации — нагрузки, температуры, многоцикловые повреждения материала, химические и радиационные воздействия и другие. В результате моделирования вычисляют вероятности безотказной работы для разных видов отказов и разрушений и долговечность, что легко переводится в число отказавших и разрушившихся деталей или в годы службы [5].  [c.365]

При оценке результатов статистических расчетов на прочность следует обращать внимание в первую очередь на порядок цифр. Так, вероятность появления трещин в этих деталях (и расчетная и эксплуатационная) составляет десятые (например 0,787), а вероятность хрупкого разрущения этих деталей с трещинами это тысячные и десятитысячные, что также соответствует ситуации в эксплуатации. Это в свою очередь свидетельствует о том, что физические модели отказов в обоих случаях сформированы верно, статистические распределения, определяющие надежность, в целом достоверны, критерии отказов верны. Поэтому расчеты вероятности наступления столь редких событий, как разрушения, приобретают право на практическое использование, так как позволяют получить важнейшую информацию о прочности изделия, которую никакими другими методами получить нельзя. Инженер XXI в. обязан иметь пред-, ставление об этих расчетах.  [c.378]


Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]

Разрушение является процессом, развивающимся во времени в локальных объемах металла, приводящим к глобальному нестабильному разрушению при достижении предельного состояния. Основной задачей механики разрушения является разработка метода расчета деталей на прочность при наличии развивающейся трещины. Кроме того, необходимо уметь определять 1) какой материал и в каком структурном состоянии является оптимальным для заданных условий нагружения 2) какие наиболее информативные методы и критерии следует выбрать для выявления сопротивления материала зарождению и распространению трещины 3) требования к технологии изготовления изделия, при которой повреждаемость материала минимальная 4) как проектировать изделие с точки зрения наиболее благоприятного распределения напряжений у предполагаемых дефектов и концентратов напряжений 5) историю разрушения по фрактографическим параметрам. Таким образом, механика разрушения занимает основные позиции не только в материаловедении, технологии и конструировании деталей машин и агрегатов, но и в диагностике и инспекции разрушения. Знание основных закономерностей разрушения материала необходимо и достаточно для решения перечисленных выше задач механики трещин.  [c.15]

Расчет на контактную прочность ведут по напряжению и , сопоставляя его с установленным на основании опытных данных допускаемым напряжением [а] . Условие прочности будет сТк<Мк-Если величина контактных напряжений будет больше допустимой Ок>[а]к, то на поверхности деталей появляются вмятины, борозды, трещины и мелкие раковины.  [c.41]

Современные методы расчета прочности деталей основаны на гипотезах непрерывности, однородности и изотропности материала. В действительности распределение усилий между зернами металла происходит неравномерно. В некоторых зернах могут иметь место пластические деформации значительной величины, в результате которых образуются микротрещины. При переменных нагрузках они имеют тенденцию развиваться при этом местные напряжения оказ ываются опасными для прочности не только хрупких, но и пластичных металлов. При достаточно больших напряжениях в кристаллитах пластичных металлов нарушается связь между атомами сдвинутые группы атомов перестают образовывать единую атомную цепь. Указанные сдвиги сопровождаются, с одной стороны, скольжением внутри отдельных зерен, упрочнением металла, а с другой стороны, микроскопическими трещинами. При небольших переменных нагружениях образца сначала развитие трещин происходит очень медленно, далее постепенно ускоряется, а на последнем этапе происходит внезапное разрушение.  [c.217]


Если при статических нагрузках состояние рабочих поверхностей незначительно влияет на их прочность, то при циклических нагрузках разрушение деталей связано с развитием усталостных трещин, возникающих в поверхностном слое. Развитию этих трещин способствует шероховатость поверхности в результате механической обработки. При расчетах это явление учитывается коэффициентом влияния шероховатости поверхности  [c.248]

Для повьппения предела вьшосливости деталей широко используют технологические методы поверхностного упрочнения обработку роликами, обдувку дробью, закалку токами высокой частоты, цементацию, азотирование, цианирование и др. Эффект поверхностного упрочнения перечисленными методами заключается в создании в поверхностном слое остаточных сжимающих напряжений, благотворно влияющих на усталостную прочность, и переноса очага зарождения усталостной трещины с поверхности в подслойную область. В расчетах влияния поверхностного упрочнения учитывают коэффициентом упрочнения  [c.354]

Кроме того, механика разрушения дает методы расчета долговечности на этапе развития трещины — живучести и ставит задачу оценки материала по способнсти сопротивляться развитию в нем трещины, что улучшает выбор стали для конструкций, в которых могут возникать или существуют трещины. В задачи механики разрушения входит также установление причин и характера разрушений, т. е. фрактографическое исследование разрушений. Возникает также необходимость наметить и изучить пределы допустимости разрушений, разграничить трещины и дефекты на недопустимые (опасные) и допустимые (безопасные) и, может быть, допустить сознательно в некоторых случаях работу изделий с трещинами. Но основной задачей является разработка методов расчета на прочность деталей с трещинами.  [c.191]

Создание новой техники невозможно без проектировочных и проверочных расчетов на прочность и долговечность, цель которых в конечном итоге - подтверждение правильности выбора материала, размеров элементов конструкций и машин, обеспечивающих их надежную работу в пределах заданных условий нагружения и срока службы. Обычно подобные расчеты выполняют на основании традиционных подходов сопротивления материалов с привлечением дополнительных методов, позволяющих уточнить напряженное состояние в рассчитываемых зонах деталей, и стандартных, как правило, экспериментов для получения нужных характеристик материалов. Однако увеличение мощности, производительности, КПД и других характеристик современной техники, большие габариты, сложные очертания конструкции, недоработанность технологии или случайные условия эксплуатации обусловливают возникновение дефектов, приводящих к нежелательным последствиям. Для учета в расчетах на прочность и долговечность существующих дефектов применяют методы линейной и нелинейной механики разрушения, основанные на анализе напряженно-деформированного состояния в окрестности фронта трещины.  [c.5]

Основой расчета на прочность при однократном нагружении деталей с трещинами для небольцшх уровней предельных номинальных напряжений (0,3—0,6 от предела текучести) является линейная механика разрушения, в которой используются коэффициенты интенсивности напряжений и их критические значения.  [c.126]

В то же время амали.э разрушений деталей машин, эксплуатирующихся при циклических нагрузках, показывает, что в большинстве случаев инициатором таких разрушений являются технологические (непровары, неметаллические включения, волосовины, закалочные трещины, плохое качество обработки поверхности и т. п.) или эксплуатационные (забоины, язвы коррозии, следы фреттинг-коррозии, трещины а зонах концентрации напряжений при малоцикловом нагружении и т. п.) дефекты, которые или сами по себе являются трещинами, или приводят к зарождению трещин после некоторого времени эксплуатации. В этом случае преобладающая часть долговечности реализуется при наличии трещин. Все это требует наряду с традиционными методами расчетов на прочность обоснования живучести деталей машин с использо-еанием критериев механики разрушения.  [c.4]

Возможность использования в расчетах на прочность критериев нелинейной механики разрушения устанавливается при специальных экспериментальных исследованиях закономерностей разрушения на деталях с дефектами, размеры которых близки к реальным (0,05—0,1 толщины элемента). Важность таких экспериментов очевидна, так как в линейной механике разрушения для определения достоверных значений iti приходилось применять образцы больших размеров с глубокими трещинами (0,3—0,6 толщины сечения), низкие температуры, а также низкие уровни номинальных напряжений, что не соответствует реальным условиям.  [c.213]

Развитие исследований по процессам деформации и разрушения в механическом и физическом аспектах способствует усовершенствованию расчета деталей конструкций на прочность и жесткость. Рассмотрение предельных состояний по критерию образования пластических деформаций, жесткости инициированию и развитию трещин позволило сблизить результаты расчетов с действительной несущей способностью конструктивных элементов и соответствующими опытными данными. Тем самым были углублены теоретические и экспериментальные основы инженерных расчетов на прочность и долговечность в связи с типом и режимом напряженного состояния. Дополнения физики твердого тела и физического металловедения способствовали объяснению макроскопическик закономерностей сопротивления деформациям и разрушению, влиянию на них времени тепловых и механических воздействий. При этом намечаются пути взаимодействия механики деформации и разрушения в констануальной трактовке с физическими представлениями о поведении кристаллов и кристаллических конгломератов.  [c.517]

В различных отраслях промышленности при проектировании осуществляют в основном детерминированные (не учитывающие фактор случайности) расчеты на прочность по допускаемым напряжениям с использованием условия (Тщах И- В предыдущих главах рассматривался именно этот наиболее используемый метод. Расчеты выполняют для деталей с постоянными размерами поперечных сечений. Принимают, что свойства материалов и прикладываемая нагрузка также постоянны. Получить достоверные результаты при выполнении детер 1инированных расчетов практически невозможно, так как нагрузка и прочность являются случайными параметрами, находящимися под воздействием различных случайных факторов. В результате при средних значениях всех параметров детали машин могут иметь запас прочности. При неблагоприятных же условиях напряжения в опасных точках могут превьшхать п едел прочности или истинное сопротивление разрыву материала л , что вызывает появление трещин или полное разрушение детали. Указанная особенность не учитывается при проведении обычных расчетов по допускаемым напряжениям.  [c.364]

Методы второй группы (см. табл. 2.23, образцы типов 3, 4, 5, 6, 7, 8) позволяют моделировать напряженное состояние и условия разрушения деталей, близких по ( рме и конфигурации, изучать процессы распространения образовавшихся поверхностных трещин в условиях уменьшающихся по мере удаления от поверхности напряжений, а также изучать влияние на число циклов до образования трещин концентраторов напряжений различной формы, изготовленных по разной технологии. В этих методах термические напряжения изменяются с течением времени не только при нагреве, охлаждении и выдержке, но различны и по сечению образцов, причем в процессе термоциклирования эти напряжения в разных точках образца перераспределяются. Все это делает задачу о расчетном определении значений (г и с достаточно сложной величины <г и с оказываются в значительной степени связанными с точностью определения или расчета температурных полей и принятыми гипотезами пластичности и пoлзyчe ти Поэтому такие методы не могут быть использованы в качестве простейших - базовых для определения характеристик материалов, необходимых для проведения расчетов прочности деталей. С их помощью могут решаться задачи по определению термостойкости образцов с поверхностным слоем, имеющим механические свойства и химический состав, отличаю-пщеся от сердцевины, а также с различного рода неметаллическими включениями. Рассмотрим подробнее особенности методик испытаний образцов типов 1, 2 и 7.  [c.191]


Таким образом, при статическом нагружегии деталей из пластичных материалов концентрация напряжений практически не оказывает влияния на их прочность и не )Л1итывается при расчетах. Исключение составляют элементы с острыми надреза ш, тонкими пропилами и трещинами, в зоне располо Кения которых развитие пластических деформаций а следовательно, перераспределение и выравнива1ше напряжений невозможны такие элементы из пластичного материала разрушаются хрупко (без текучест i и образования шейки).  [c.72]

Наиболее важными характеристиками улучшаемых сталей являются прокаливаемость и сопротивление усталости. Глубина прокаливаемого слоя у легированной стали 40Х составляет 40 мм, а у сложнолегированных сталей 40ХНМ и 38ХНЗМА — 100 мм. Этого достаточно для термического улучшения деталей широкой номенклатуры, а для ряда осесимметричных деталей не требуется сквозная прокаливаемость. Например, конструкционная прочность валов обеспечивается, когда структура сорбита отпуска образуется в слое толщиной, равной половине радиуса вала. Недостатком ряда улучшаемых сталей является чувствительность к обратимой отпускной хрупкости. К ней наиболее склонны хромомарганцевые и хромоникелевые стали с большой прокаливае-мостью. Для предотвращения охрупчивания деталей из этих сталей при высоком отпуске принимают технологические меры. Улучшаемые стали, содержащие молибден, нечувствительны к отпускной хрупкости. После термического улучшения о не превышает 550 МПа. В результате расчета долговечности деталей по этим значениям получают большие размеры деталей, что неприемлемо из-за увеличения расхода металла и габаритных размеров механизмов. При расчете ограниченной долговечности деталей исходят из переменных напряжений, больших Это основано на живучести сталей после термического улучшения, когда главное значение имеют малые скорости распространения усталостных трещин. Проверка деталей средствами неразрушающего контроля позволяет обнаруживать усталостные трещины и заменять дефектные детали.  [c.104]

В заключение люжно сказать, что вопрос масштабного эффекта применительно к прочности деталей п конструкций в условиях хрупкого разрушения является многосторонним. Здесь необходимо рассматривать отдельно условия образования трещины хрупкого разрушения малой протяженности и условия внезапного хрупкого разрушения детали в целом. В первом случае при уменьшенном масштабе образца оказывают существенное влияние увеличенная неравномерность распределения деформаций, напряженное состояние в детали и свойства поверхностного слоя металла. Во втором случае важную роль играет запас потенциальной энергии деформации, накопленной в детали и ухудшение характеристик материала в сечениях больших размеров, по которым происходит разрушение. С учетом этого нельзя рассчитывать на возможность охарактеризовать масштабный эффект какой-либо постоянной материала без учета формы детали и распределения напряжений в ее объеме или каким-либо коэффициентом, полученным для данной формы детали в предположении совершенно упругого материала без учета его структуры и текстуры. В зависимости от форлп детали и условий ее изготовления и эксплуатации может преобладать тот или иной из факторов, с которыми связано наличие масштабного эффекта. Конструктор может правильно использовать результаты испытаний стандартных образцов малых размеров при проектировании и расчетах деталей и конструкций больших размеров только на основании рассмотренных выше зависимостей.  [c.374]

Характеристики сопротивления усталости, в первую очередь предел иыпосливости, существенно зависят от технологии изготовления образцов tt деталей машин, конструкции и условий их эксплуатации. Под воздействием коррозии, фреттинг-коррозии, при наличии остаточных напряжений растяжения, мелких поверхностных трещин и т. п. пределы выносливости деталей машин могут снижаться в пять и более раз по сравнению с пределами выносливости лабораторных образцов. Поэтому знание характе-рнстик сопротивления усталостному разрушению металлов и сплавов, полученных в лабораторных условиях при исключении влияния определя-1СИЦИХ факторов, является недостаточным как при разработке материалов, IIIK и при расчетах деталей машин и сооружений на прочность.  [c.13]

Наличие большого числа трещин в деталях отчетливо доказывает недостаточность классических расчетов по упругому и пластическому состоянию, ограниченность оценок на основании привычных характеристик прочности — предела текучести, предела прочности, истинного сопротивления разрыву 5, и необходимость введения в расчеты новых характеристик разрушения. Работами последнего времени твердо установлено, что нагрузка (сопротивление тела) обычно продолжает возрастать и после обнаружения ранних трещин, и процесс развития трещины занимает часто больше половины общего времени работы детали до разрушения. Схематически это показано на рис. 9.1. Это соотношение меняется в зависимости от особенностей материала и детали. Следовательно, детали в эксплуатации могут работать и работают с трещинами, что весьма опасно, так как разрушающая нагрузка для них намного меньше допускаемой, определяемой по условию прочности сопромата ДЛЯ тел без трепщн.  [c.190]

Однако в условиях эксплуатации деталей, в результате наличия надрезов, перекосов, влияния среды и т.п., стадия разрушения (т.е. возникновение и развитие трещины) появляется задолго до исчерпания несущей способности (до максимальной величины нагрузки, выдерживаемой деталью). При этом прочность материала (детали в идеализированных условиях) недоиспользуется или даже не используется вовсе. Длительность процесса разрушения (роста трещины) до полного разрушения занимает значительную часть жизни детали, доходя до 90% и выше. Главное - темп роста трещины, а не факт ее наличия. Поэтому для повышения прочности необязательно повышать среднее сопротивление отрыву - достаточно регулировать процесс появления и, в особенности, развития трещин. В конструкциях применяют различные препятствия, тормозящие развитие трещин и сигнализирующие об их появлении, а также дополнительные элементы конструкции, берущие на себя часть нагрузки при уменьшении жесткости от возникшей трещины. Необходимо развивать методы расчета, пути распространения трещины (траектории трещины), связи ее размеров с внешней нагрузкой и кинематические характеристики движения конца трещины.  [c.118]

Определение предельных нагрузок и швасов прочности на стадии образования трещин в зонах и вне зш1 концентрации напряжений. Рассмотрен- Шв выше (см. с, 46 — 67) закономер оста деформирования и разрушения 0ри статическом нагружении в зона й вне зон концентрации напряжений могут быть использованы для расчетов йрочности и долговечности несущих элементов конструкций и деталей машин. При традиционных расчетах ста Тйческой прочности по номинальным Допускаемым напряжениям действующие в элементе конструкции номинальные эксплуатационные напряжения должны удовлетворять неравенству  [c.67]


Смотреть страницы где упоминается термин Расчеты на прочность деталей с трещинами : [c.228]    [c.288]    [c.21]    [c.4]    [c.66]    [c.14]    [c.224]    [c.88]   
Смотреть главы в:

Сопротивление материаловИздание 2  -> Расчеты на прочность деталей с трещинами



ПОИСК



Детали Расчет на прочность

Детали Расчеты

Детали Трещины

Примеры расчетов на прочность деталей с трещинами

Прочность детали



© 2025 Mash-xxl.info Реклама на сайте