Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы измерения параметров поглощения

МЕТОДЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОГЛОЩЕНИЯ Импульсы В образцах породы  [c.115]

Первый метод измерения оптических постоянных использует угловые зависимости коэффициентов отражения в области полного внешнего отражения. Параметры у и б подбираются так, чтобы экспериментальная кривая наилучшим образом описывалась формулой Френеля (1.7). Этот метод оказывается наиболее удобным при использовании упрощенной формулы Френеля (1.11), которая, как было показано на рис. 1.1, дает семейство кривых R х) при различных у х = 0/0с, у == у/б). Для мягкой рентгеновской области он использовался в ряде работ [15, 17, 46]. Считая, что погрешность экспериментальных данных не выходит за пределы 2 %, авторы работы [16] оценивают точность определения у/б таким методом 10 %. Заметим, что использование упрощенной формулы Френеля (1.11) ограничено, так как предполагает малое поглощение и малые углы падения.  [c.21]


В работе [13.15] приведены таблицы значений квадрупольных моментов, констант квадрупольного взаимодействия, параметров асимметрии и измеренных частот поглощения. Применение метода ЯКР целесообразно, если константа квадрупольного взаимодей-  [c.186]

Под названием измерительная аппаратура здесь понимается весь комплекс приборов, позволяющий представить тот или иной параметр поля либо в виде осциллограммы, либо в виде численного значения, отсчитанного по шкале индикатора. Основным элементом такого комплекса приборов является чувствительный элемент, непосредственно реагирующий на параметр поля, подлежащий измерению. В зависимости от метода измерений это может быть, например, световой луч (в оптическом методе), объем жидкости или твердого тела, нагреваемый в результате поглощения энергии ультразвуковых колебаний (в калориметрическом и термоэлектрическом методах), пьезоэлектрик и магнитострикционный элемент, отражающая (поглощающая) пластинка или сфера (в радиометрическом методе) и т. д.  [c.329]

Измерения спектров поглощения атмосферного воздуха выполнены на ВР-спектрометрах с пороговой чувствительностью до 10 см во многих спектральных участках, где работают лазерные системы для исследования атмосферы. Анализ этих результатов приведен в [21] и иллюстрируется табл. 7.1. В итоге, при исследованиях атмосферного воздуха, зарегистрированы сотни новых линий поглощения атмосферы, что в ряде случаев позволило существенно скорректировать существующие атласы спектров поглощения атмосферы. В табл. 7.2 приведены результаты сравнения экспериментальных данных по параметрам линий поглощения Н2О в области 1,06 мкм, полученных в ИОА СО АН СССР методами ВР-спектроскопии, с данными атласа спектральных линий 34, 36  [c.162]

Измерения поглощения звука а в газах и жидкостях акустическими методами в области ультразвуковых частот дают возможность, согласно формуле (2.12), определить объемную вязкость г , если известна сдвиговая вязкость т (значение которой рассчитывается или находится другими, неакустическими методами) и известны параметры, соответствующие условиям измерений, т. е. со, р, с, н, входящие в формулу для а. При этом в большом числе случаев вклад н в а для газов имеет существенное значение,тогда как для неметаллических жидкостей вклад теплопроводности в значение а не так велик (примерно на порядок меньше, чем вклад от влияния I I и Ti ). Ультразвуковые измерения ti по разности измеренного а и вычисленного по значениям т и параметров эксперимента, по существу, являются единственным (косвенным) методом измерения объемной вязкости. В отсутствие релаксационных процессов (см. ниже), значение л и т] для многих простых жидкостей примерно равны. Для одноатомных газов эксп практически совпадает со значением вычисленным согласно формуле (2.13), т. е. при  [c.43]


Оптические исследования газодинамических потоков могут вестись методами проходящего света и методами, основанными на рассеивании света. К первой группе можно отнести методы, в которых характеристики исследуемого потока определяются путем измерения изменений амплитуды и фазы световой волны, прошедшей через исследуемую область потока. Как правило, изменения параметров проходящей световой волны в неионизированной газообразной среде связывают с изменениями плотности или показателя преломления света в среде. При этом явлениями поглощения и рассеяния света на инородных включениях, переносимых потоками, обычно пренебрегают ввиду относительной малости этих эффектов.  [c.215]

Наибольшее распространение получили тепловые методы, основанные на измерении температуры нагрева поглотителя с помощью термопары, термостолбика, болометра или термосопротивления. При измерении выходных параметров лазерного излучения калориметрическим методом необходимо добиваться максимального поглощения оптической энергии в нагрузке. В качестве поглотителя применяются твердые тела, жидкости или  [c.95]

Температура, определяемая с помощью зондирующего светового пучка, характеризует область, размеры которой в плоскости образца обычно совпадают с размерами светового пятна, а размер в глубину близок к толщине (/г) слоя, в котором формируется сигнал. Для некоторых методов (например, основанных на измерении коэффициента отражения или параметров поляризации света) значение /г совпадает с глубиной 3 проникновения света в материал. Для металлов, облучаемых светом видимого диапазона, 6 34-30 нм, т. е. порядка 54-50 постоянных кристаллической решетки. Для полупроводников и диэлектриков в области поглощения 3 0,014-10 мкм в области прозрачности 6 14-100 см (отражение от поверхности в этом случае формируется в слое толщиной порядка нескольких длин волн). В ряде методов (например, интерферометрическом, а также по положению края поглощения света в кристалле) определяется температура, усредненная по толщине прозрачного или полупрозрачного образца, имеющего форму плоскопараллельной пластины.  [c.198]

Измерение интенсивностей полос в парах, за исключением полосы циклопентана, проводилось в динамическом режиме [ ] с накоплением измерений в области малых поглощений. На рисунке приведен типичный экстраполяционный график. Параметры экстраполяционных графиков и среднеквадратичные ошибки в определении точек экстраполяции рассчитывались методом наименьших квадратов с учетом статистических весов отдельных измерений [ ].  [c.268]

Наибольшее число работ, выполненных методом линейчатого поглощения в вакуумном ультрафиолете, посвящено определению концентрация атомов водорода, измерению силы осциллятора линии Ьа и реакциям взаимодействия атомов водорода с различными газами [77—88]. Атомы водорода образуются прп самых различных химических реакциях, и их взаимодействие с другими атомами чрезвычайно важно с точки зрения изучения кинетики весьма сложных химических реакций. Очень важно для практического использования метода линейчатого поглощения то, что точно известна сила осциллятора линии Ь . Это позволяет найти силу осциллятора методом поглощения и, сравнив ее с теоретической величиной, убедиться в отсутствии методических ошибок при использовании метода поглощения. Линию Ьа легко регистрировать, так как она попадает в окно прозрачности воздуха. Прн определении концентрации атомов водорода пользуются оптически тонкими слоями в излучающей трубке и находят параметр а [79, 87] или используют для эталонирования вспомогательные разряды [81, 87, 88]. Молекулы водорода, в отличие от молекул кислорода и азота в разряде, могут быть полностью диссоциированы, и поэтому известно, какое количество атомов проходит через кювету. Легко праве-  [c.290]

Излучению (поглощению) газов посвящена обширная литература. Развитие астрофизики, ракетной техники, теплотехники, гидродинамики и т. д. потребовало создания новых теоретических и экспериментальных методов расчета оптических параметров газообразных сред. Особенно интенсивно развиваются проблемы теплообмена в газах за последние годы, в связи с изучением высокотемпературной и низкотемпературной плазмы, а также лучистого теплообмена при движении тел в плотных слоях атмосферы. Необходимость диагностики оптических параметров среды, определения количественного и качественного ее состава, измерение температур и концентраций заряженных частиц резко увеличило интерес к прикладной спектроскопии, которая стала неотъемлемой частью современного количественного и качественного анализа.  [c.227]


Предложено уравнение, связывающее теплофизические и оптические свойства материала с геометрическими и тепловыми параметрами исследуемого образца, которое положено в основу метода одновременного определения истинной теплопроводности и интегрального коэффициента поглощения полупрозрачных веществ. Создана установка для измерения указанных величин в интервале температур от 400 до 1100 С, использующая два образца разной толщины. Измерительная схема построена по методу плоского слоя с разделением фонового и основного нагревателей и автоматической регулировки тепловых режимов.  [c.160]

Эффект Мессбауэра (ядерный гамма резонанс)состоит в резонансном поглощении 7-квантов без отдачи. При облучении твердого тела у-квантами атомное ядро может возбуждаться, т.е. переходить в состояние с большей внутренней энергией. Основные параметры Мессбауэровских спектров зависят от межатомного расстояния, т.е. колебания атомов относительно положения равновесия в кристаллах зависит от напряжений. Площадь спектральных линий уменьшается с увеличением напряжений сжатия. Для получения Мессбауэровских спектров используют Мессбауэровские спектрометры, в которых в качестве источников у-квантов применяют радиоактивные изотопы. Методом ядерного гамма резонанса можно исследовать плоское напряженное состояние с усреднением напряжений по глубине слоя 5...20 мкм. Точность самого метода оценивается авторами величиной (0,05...1,25)МПа [18], однако с учетом суммарных погрешностей измерений и усреднения по глубине его точность может находиться в пределах 20 МПа.  [c.73]

Совершенствование техники ОА-спектроскопии, детальная проработка вопросов методики измерений и метеорологического обеспечения привело к широкому внедрению ОА-метода в практику спектроскопических исследований для получения количественной информации о спектрах поглощения, параметрах отдельных спектральных линий, порогах нелинейных спектроскопических эффектов и т. д. [3, 12, 26, 29  [c.142]

Еще раз подчеркнем, что измерение самого значения объемной вязкости 1] и ее зависимости от частоты и различных физических условий возможно только акустическим методом. Встречаются также случаи, когда акустические методы исследования процессов релаксации могут способствовать обнаружению самого релаксационного механизма, дают возможность проводить измерения характерных времен и внутренних параметров. Так, например, наблюдается сильное увеличение поглощения звука из-за флуктуаций концентрации вблизи критической точки расслаивания в ряде растворов. В некоторых растворах с критической точкой сосуществования при концентрации С С рит и при Т Т крит как известно, средний квадрат флуктуаций концентрации сильно увеличивается. Измерения в определенной области частот коэффициента поглощения звука а показывают, что а при этом также сильно увеличивается, что дает возможность определить время релаксации. Оптические методы в этом случае хотя и позволяют обнаруживать само явление рассеяния, но не дают определения величины флуктуаций концентрации, тогда как акустические методы это позволяют сделать [40, 41], правда, с небольшой точностью.  [c.61]

Резонансный метод применяют только при измерениях на образцах. Он основан на возбуждении в образцах правильной формы (стержень, пластина) упругих волн различного вида - продольных, крутильных, изгибных. Для их возбуждения используют генераторы, создающие непрерьшный сигнал определенной частоты. Меняя частоту сигнала, добиваются резонанса-максимальной амплитуды колебаний. По значению резонансной частоты указанных типов колебаний определяют упругие параметры модуль Юнга, модуль сдвига, коэффициент Пуассона и скорости упругих волн. По форме резонансной кривой для продольных и изгибных колебаний определяют декременты поглощения продольных и поперечных волн.  [c.148]

Параметры поглощения - а или и дисперсия фазовой скорости - измеряются в лаборатории на образцах, по данным ВСП в глубоких скважинах, и по данным поверхностной (наземной и/или морской) сейсморазведки. Первые два вида измерений выполняются по большинству исследуемых в интересах сейсморазведки образцов и по большинству данных ВСП, поэтому для этих видов измерений существуют сложившиеся и хорошо освещенные в литературе методы и технологии. По данным поверхностной сейсмики параметры поглощения определяются лишь в редких случаях. В соответствии с направленностью настоящей монографии, ниже рассмотрен именно этот, третий вид измерений. Важно, что методы измерения параметров поглощения не связаны с теорией механизма поглощения и потому приложимы в равной степени к моделям как сплошных, так и дискретных сред.  [c.113]

Рассматривается комплексный метод измерения диэлектрической постоянной сильнопоглощающих веществ на СВЧ. В качестве исходных измеряемых параметров выбраны величины коэффициентов отражения и поглощения. Для иллюстрации метода приведены результаты и последовательность измерений радиофизических свойств цементного шлама.  [c.259]

Одним из основных параметров многих теплотехнических объектов, преобразующих энергию рабочего тела во вращательное движение (или с помощью вращения передающих энергию рабочему телу), является мощность, которая определяется лишь косвенным путем, по измерению крутящего момента и угловой скорости вращения ротора. Электродвигатели, турбинные двигатели, турбостартеры, газовые и гидравлические турбины являются источниками мощности, а такие объекты, как компрессоры, насосы, генераторы — поглощают мощность. В связи с этим и измерение крутящего момента на валу может быть осуществлено двумя методами с поглощением и без поглощения мощности. При измерении крутящего момента с поглощением мощности используются тормозные устройства со свободно подвешенным статором реактивный момент на статоре тормоза равен приложенному к ротору крутящему моменту. Измерения без поглощения мощности осуществляются по балансирному моменту на статоре электродвигателя, редуктора или же с помощью торсиометров и других специальных измерителей.  [c.321]


Оптико-акустический метод очень широко используется для получения количественной информации о спектрах поглощения и параметрах отдельных линий, порогах нелинейных спектроскопических эффектов. Так, с его помощью выполнены измерения коэффициентов поглощения атмосферного водяного пара и метана на отдельных линиях генерации СОг-лазеров [93], СО-лазеров [81] и (НеКе)-лазеров [57], проведены исследования контуров линий поглощения метана [4] и водяного пара [49] в области перестройки длины волны гелий-неонового (3,39 мкм) и рубинового (0,69 мкм) лазеров при вариации давления и состава газовой смеси.  [c.198]

Измерения параметров акустических полей. Использование акустооптических взаимодействий для измерения параметров акустических полей является одной из наиболее важных областей их применений [1—8]. Причиной тому, наряду с универсальностью и бесконтактностью, служит то обстоятельство, что с их помощью можно определять практически все параметры звука — длину волны, интенсивность, поглощение и т. д. Много важных экспериментальных результатов, касающихся распространения и взаимодействия когерентных и тепловых акустических волн в различных средах, получено именно оптическими методами ). Конкретные способы и методики акустооптических измерений довольно многообразны, однако все они базируются на закономерностях дифракции света на звуке ( 2—4). Например, в случае раман-натовской дифракции длину звуковой волны можно определить по доплеров-  [c.354]

УЗ-вые методы, основанные на измерениях скорости и затухания звука, широко используются в технике для определения свойств и состава веществ и для контроля технологич. процессов (см. Контрольно-измерительные применения ультразвука). По скорости звука определяют упругие и прочностные характеристики металлич. материалов, керамики, бетона, степень чистоты материалов, наличие примесей. Измерения скорости и поглощения в жидкостях позволяют определить концентрацию растворов, следить за протеканием химич. реакций и других процессов, за ходом полимеризации. В газах измерения скорости звука дают информацию о составе газовых смесей. При УЗ-вых измерениях в твёрдых телах используют частоты 10 —10 Гц, в жидкостях — до 10 Гц, в газах — не выше 10 Гц выбор частотных диапазонов соответствует поглощению УЗ в этих средах. Точность определения состава веществ, концентрации примесей УЗ-выми методами высока и составляет доли процента. По изменению скорости звука или по Доплера эффекту в движущихся жидкостях и газах определяют скорость их течения (см. Расходомер). Для исследования свойств веществ используют также методы, основанные на зависимости параметров резонансной УЗ-вой колебательной системы от акустич. сопротивления нагрузки, т. е. от свойств нагружающей её среды. Это т. н. импедансные методы, к-рые применяются в УЗ-вых сигнализаторах уровня, вискозиметрах, твердомерах и т. д. Во всех перечисленных методах измерений и контроля свойств вещеегв применяются весьма малые интенсивности УЗ эти методы требуют малого времени для измерений, легко поддаются автоматизации, позволяют производить дистанционные измерения в агрессивных и взрывоопасных средах и осуществлять непрерывный контроль веществ в труднодоступных местах.  [c.17]

Трудность проведения прямых измерений электростатических величин АЛ или А заставляет прибегать к косвенным методам, которые сводятся к измерению двух разных кинетических параметров, графическому изображению их функциональной зависимости и сравнению этой зависимости с теорией-. Существует ряд методов такого сорта, среди которых могут быть упомянуты проведенные Харриком [42] измерения ИК-поглощения в ОПЗ  [c.112]

В 1964 г. Фрейзер и Лекроу [52] предложили метод определеиия упругих констант и параметров поглощения твердых материалов путем измерения остроты резонанса различных мод вибрирующего сферического образца. Этот метод применялся к специально изготовленным сферам пород, стекла и металла [17, 98]. Аналогично анализировались собственные колебания Земли, вызванные большими землетрясениями, с целью уточнения законов измерения скорости и поглощения с глубиной [147].  [c.123]

Диаграммадеформаии я— напряжение. Изящный прямой метод измерения упругих констант и параметров поглощения состоит в регистрации напряжения и деформации при синусоидальном нагружении малого объема породы. В проведенных исследованиях [23] образцы песчаника, базальта и гранита были изготовлены в виде цилиндрических патронов, имеющих размеры длина 28 см, внешний диаметр  [c.128]

Первым шагом на пути к построению реалистической модели Земли является модель сферы, выполненная локально-изотропным твердым веществом, у которого параметры 1хир зависят только от радиуса. Годографы- волн Р и 8 дают информацию о глу ких частях Земли, а длиннопериогдные-поверхностные волны лозволяют определить мощность коры и скорость волн в верхней мантии. Прогресс в методах измерения, достигнутый в последние 15 лет, обеспечил измерение основных мод собственных колебаний Земли, вызванных мощными землетрясениями, частоты которых определяются изучаемой упругой моделью. Вторым шагом к реалистической модели Земли является введение поглощения лри рассмотрении упругих констант как комплексных величин. Определение соответствующих параметров по затуханию волн Р и 5 связано со многими ограничениями, поскольку на амплитуду объемных волн сильно влияют рассеивание и локальные условия вблизи каждого сейсмографа. Затухание поверхностных волн более доступно прямому измерению, особенно тех волн, которые несколько раз обогнули земной шар. Ослабление ревербераций, следующих за большим землетрясением при надлежаш ей фильтраций, можно рассматривать как затухание отдельных резонаторов. Перечислен-яые источники информации позволили вывести зависимость параметров поглощения от радиального расстояния. Поскольку наличие поглощения обусловливает дисперсию скорости, следующий шаг состоит в изучении частотной зависимости упругих констант. Хотя радиальная модель Земли в общем и соответствует имеющимся наблюдениям, веш ество Земли лаТврально неоднородно, сама Земля не является сферой и вращение Земли имеет ряд резонансных пиков. В предположении, что модуль всестороннего сжатия чисто упругий (это означает отсутствие потерь энергии при сжатии). Qp=(4 3) (i /a) Qs, этого достаточно для определения величины 3 как функции радиуса. В грубом приближении равно 200 для верхней мантии, затем уменьшается до 100 на глубинах 100—200 км и затем медленно возрастает до 500 и более,  [c.133]

Оценки основных термодинамических характеристик плазмы искрового канала температуры, коэффициентов и показателей поглощения, потерь энергии с излучением и других - основаны на измерениях спектральной плотности лучистого потока (или яркости Ья). Результаты измерений спектральной плотности яркости искрового канала в оптически прозрачных твердых диэлектриках (ЩГК, органическом стекле, полевом шпате) по методу сравнения, несмотря на тщательный контроль за сохранением условий эксперимента (параметров разрядной цепи, длины межэлектродного промежутка, параметров оптической системы, геометрии образца и т.д.), подвержены значительным статистическим флуктуациям. Природа этих разбросов обусловлена малыми радиальными размерами искрового канала, особенно в начальной стадии его расширения, искривлениями и нестабильностью положения канала относительно оси электродов, вариациями кинетики трещин вокруг канала и т.п. Изучение влияния типа ЩГК, режимов энерговклада и других факторов возможно только с применением статистических методов, в частности, дисперсионного анализа. Результаты проверки закона распределения отдельных измерений максимального значения спектральной плотности  [c.45]


МОЛЕКУЛЯРНАЯ АКУСТИКА — раздел физ. акустики, в к-ром структура и свойства вещества и кинетика молекулярных процессов исследуются акустич. методами. Осн. методы М. а.— измерения скорости, звука и козф. поглощения звука в зависимости от разл. физ. параметров частоты звуковой волны, темп-ры, давления, маги, поля и др. величин. Исследования, проводимые такими методами, иногда объединяют в особый раздел экснерим. акустики — ультразвуковую или акустическую спектроскопию. Методами М. а. можно исследовать газы, жидкости, полимеры, твёрдые тела, плазму. На ранней стадии развития этой области и в нек-рых случаях до сих пор термин М. а. применяют лишь к исследованиям молекулярной структуры газов а жидкостей.  [c.193]

ТО в спектральном контуре поглощения (усиления) этой волны образуется провал на частоте Длительность существования провала определяется временем жизни частиц на возбуждённом уровне. Перестройкой частоты пробного пучка удаётся измерить естеств. форму линий перехода, совпадающую с формой провала в насыщенном спектре поглощения (усиления) и обычно скрытую неоднородным (в газе — доплеровским) уширением. Этим методом можно также определить времена релаксации двухуровневой системы, Т. о., Н. с. позволяет измерять параметры одиночного оптич. резонанса, не поддающиеся измерению методами линейной спектроскопии. Циркулярно поляризованная волна накачки может индуцировать в среде гиротропию для пробной световой волны.  [c.306]

Анализ формул Френеля показывает, что фазовые характеристики отражённой световой волны чувствительнее к изменениям оптич. параметров, чем амплитудные, к тому же измерения фазовых характеристик могут быть проведены с большей точностью, чем амплитудных. Это обусловливает широкое применение Э. отражения. Для анизотропных сред необходимы измерения в неск. плоскостях падения. Для поглощающих кристаллов любых симметрий наиб, общий метод заключается в измерении на одном аншлифе параметров эллипсов при одном угле падения для трёх плоскостей падения и при другом для одной плоскости (5 ]. Более простые методы пригодны лищь для высоких симметрий без поглощения.  [c.609]

Измерение методом сравнения (жидкость сравнения — дистиллированная вода, Г=7,1+0,2). ТемпературагСС. Частота 1,5 Мгч [31]. 2) Измерения искажения оптическим методом. Температура комнатная. Частота 570 кгц [28]. 3) Измерение искажения с акустическим фильтром. Оптическое определение параметров второй гармоники [40]. Частота 3 Мгц. 4) По взаимодействию двух волн [23]. 5) Измерение методом сравнения (жидкость сравнения — ацетон, Г=10,0). Температура —195°С. Частота Ь Мгц [41]. Эти данные исправлены с учетом измерений скорости в кипящем жидком азоте. 6) Данные, использованные для сравнения экспериментального поглощения с теоретическим [42]. 7) Термодинамический расчет по экспериментальной зависимости скорости звука от температуры и давления [43]. 8) Расчет по Г=р со7Р, из статических измерений [38]. 9) Термодинамический расчет по экспериментальной зависимости скорости звука от температувы и давления [39]. 10) Данные статических измерений [38]. И) Измерение методом сравнения (жидкость сравнения—бутиловый спирт, Г=9,6). Частота 2 Мгц.  [c.166]

В качестве чувствительного элемента может использоваться само оптическое волокно, выполненное из материала, у которого край поглощения сдвигается при изменении температуры. Несмотря на то, что волоконно-оптические датчики основаны на сдвиге края поглощения, как и обсуждаемый в данной главе метод ЛТ твердых тел, между ними имеется принципиальное различие. Методы ЛТ являются бес-контатными, они заключаются в дистанционном измерении оптических параметров (в данном случае — коэффициента поглощения света или положения края поглощения) исследумого тела. Волоконно-оптические датчики являются контактными термометрами, для которых точность измерения температуры исследуемой поверхности зависит от качества теплового контакта. В этом они не отличаются от других приборов контактной термометрии (термопар и т.д.).  [c.127]

Из сказанного ясна необходимость накопления и систематизации надежных справочных данных по основным природным и промышленным средам в области поглощения. Между тем, систематизированные результаты для наиболее важной инфракрасной области 1—25 мкм в справочной литературе практически отсутствуют за исключением, пожалуй, данных по металлам. Это объясняется, на наш взгляд, экспериментальными трудностями исследования объектов в области основных колебательных полос поглощения молекул. Однако за последнее время и теория и аппаратурнометодическая база спектральны с методов исследования вещества получили значительное развитие, что существенно углубило и расширило возможности эксперимента. С другой стороны, появление прецизионных ИК-спектрофотометров, оснащенных ЭВМ, и возросший в целом метрологический уровень измерений позволили от традиционных исследований, основанных главным образом на анализе оптической плотности, перейти к измерениям констант, т. е. собственных параметров вещества. Все это привело к тому, что стало появляться все больше публикаций по оптическим постоянным и работ, в которых эти величины используются в той или иной форме. В периодической литературе возник, по-существу, банк констант для различных объектов. Методы спектроскопии нарушенного полного внутреннего отражения позволили повысить точность измерений оптических констант и значительно пополнить круг объектов, малодоступных для количественного анализа традиционными способами исследования. На базе этих методов удалось разработать приемы неразрушающего контроля поверхностных и объемных свойств изделий.  [c.4]

Точность измерения спектральных показателей поглощения определяется точностью метода гетерохромного фотометрировання и точностью измерения нормирующего множителя. Погрешность метода гетерохромного фотометрировання складывается из погрешностей градуировки эталонного источника и измерения почернений с помощью микрофотометра и составляет 20%. Погрешность измерения нормирующего множителя складывается из погрешностей установки эталонного источника, его градуировки, измерения потенциала с помощью осциллографа, определения параметров газа н составляет 25%.  [c.312]

В целом результаты поляритонного рассеяния позволяют сделать важные выводы о свойствах вещества молекул (в жидкостях) и кристаллов. Во-первых, возникает связь между величинами, доступными измерениям, и атомными величинами в качестве примера можно указать на соотношение (3.16-60) для стоксова коэффициента усиления. Во-вторых, становится возможным определение важных макроскопических оптических величин, таких как характеристические параметры в нелинейных восприимчивостях, в дисперсионных и в релаксационных соотношениях. В определенных случаях из поляритонного рассеяния определяются оптические величины в таких областях длин волн, для которых при других методах возможны только экстраполяции. Например, в области сильной поляритонной дисперсии были определены коэффициенты поглощения и показатели преломления в инфракрасном диапазоне. Большой интерес представляют измерения времен жизнц возбужденных колебательных состояний решетки. Изменяя направления входного луча и поляризации по отношению к пространственному положению кристалла и измеряя угловое распределение возникающего излучения, можно  [c.394]

Измеряел ая величина — прирост давления в исследуемом газе — является интенсивным параметром образца, т. е. не зависит от его размеров. В силу этой особенности оптико-акустический спектрометр позволяет на ячейке длиной в несколько сантиметров получать спектры слабого поглощения, для измерения которых при спектрофотометрическом методе потребовалась бы трасса длиной в несколько километров.  [c.197]

Созданные варианты спектрометров имеют, как правило, сравнительно небольшой динамический диапазон (1... 2 порядка), определяемый регистрируемой глубиной провала О = 0,05... 0,95. Поиск способов, осуществляющих гибкое управление чувствительностью и позволяющих вести количественные измерения в широком диапазоне коэффициентов поглощения (концентраций), является важным в методическом плане. Другая важная методическая и алгоритмическая задача — увеличение числа отсчетов ОМА в системах регистрации (для полной реализации возможностей ВР-спектрометров необходимо проводить измерения в 101.. 10 точках спектра, а лучшие современные системы имеют 2048 отсчетов). Увеличение объема обрабатываемой информации потребует, возможно, привлечения алгоритмов сглаживания ВРЛ-спектра, учета аппаратной функции регистрирующей аппаратуры и расчета определяемых параметров спектральных линий. Решение этих задач превратит метод ВРЛС и ВР-спектрометры в мощное  [c.131]


Высокая селективность флуоресцентного лазерного спектрального анализа связана с возможностью осуществления селекции по нескольким каналам по частоте возбуждения, по частоте излучения, по кинетике излучения. Ряд новых методов и схем повышения избирательности флуоресцентного анализа рассмотрен в [14]. Особенно перспективными представляются методы, осуществляющие одновременную селекцию по спектрам поглощения и испускания— метод синхронных спектров и анализ получаемых данных с помощью матрицы возбуждение—излучение , а также удобное при проведении локальных измерений низкотемпературное приготовление образцов в условиях матричной изоляции системы Шпольского, сверхзвуковая струя, матрицы инертных газов [23, 24]. Перспективность применения методов лазерной флуоресценции для исследования газовых сред детально обсуждалась и подчеркивалась в [1]. Примером эффективности использования флуоресцентных методов для дистанционного определения параметров атмосферы может служить, предложенная в [21] методика детектирования радикала ОН и определения профиля температуры по отношению двух сигналов флуоресценции. Один из этих сигналов регистрируется при возбуждении с уровня Г=Ъ/2 ( 1=282,06 нм ) второй — с уровня =11/2 (А.2 = 282,67 нм). При измерении их отношения возможно определение температуры в интервале 225... 280 К с погрешностью менее 10 %, определяемой погрешностью измерения отношения сигналов на и А.2. По флуоресценции радикала ОН возможно измерение давления в диапазоне 25... 250 Па (на высотах 40... 55 км) по отношению сигналов флуоресценции при возбуждении в полосах (1.1) и (0.0).  [c.151]

Явление молекулярного поглощения широко используется при разработке методов и измерительной аппаратуры для дистанционного контроля концентрации газовых загрязнений атмосферы и оптическом мониторинге полей основных метеопараметров. Однако для реализации в полной мере тех информационных возможностей, которые могут быть связаны с применением этого явления в атмосферно-оптических исследованиях, требуется со здание соответствующей теории зондирования. В ее основе должны лежать функциональные уравнения, описывающие формирование и перенос оптических сигналов при наличии молекулярного поглощения и их связь с физическими полями в атмосфере. В качестве последних обычно выступают поля метеопараметров, чем и обусловливается особый интерес к практическим применениям явления молекулярного поглощения. Напомним, что в случае аэрозольного рассеяния оптические характеристики были связаны линейными функциональными уравнениями с полями микрофизических параметров дисперсной компоненты атмосферы, что и позволило выше построить теорию оптического зондирования в достаточно компактной и простой форме. К сожалению, для молекулярного поглощения связь оптических характеристик и полей метеопараметров носит нелинейный характер, что естественно затрудняет разработку теории и программного обеспечения для интерпретации соответствующих оптических данных. Их отсутствие приводит к тому, что при решении спектроскопических задач обычно прибегают к операциям статистического усреднения экспериментальных данных, чтобы в какой-то мере осуществить требуемую регуляризацию при извлечении физической информации из оптических измерений [11, 14, 24]. Ниже будет проиллюстрирована возможность построения теории оптического зондирования на основе явления молекулярного поглощения с применением метода обратной задачи. Эта теория основывается на тех же исходных посылках, что и теория зондирования, изложенная выше  [c.266]


Смотреть страницы где упоминается термин Методы измерения параметров поглощения : [c.355]    [c.634]    [c.33]    [c.155]    [c.417]    [c.159]    [c.325]    [c.340]    [c.343]    [c.193]    [c.219]   
Смотреть главы в:

Возбуждение и распространение сейсмических волн  -> Методы измерения параметров поглощения



ПОИСК



Измерение методы

Поглощение

Поглощение (параметр)

Поглощения методы измерения



© 2025 Mash-xxl.info Реклама на сайте