Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип стационарности потенциальной энергии системы

Принцип стационарности потенциальной энергии системы  [c.138]

Исходным пунктом вывода принципа стационарности потенциальной энергии системы служит соотношение  [c.138]

Вывод принципа стационарности потенциальной энергии системы никак не связан со свойствами материала. Поэтому и для  [c.258]

Из этого равенства можно получить три отличающихся друг от друга энергетических принципа в зависимости от того, через какие переменные выражена удельная потенциальная энергия Л. Задавая ее квадратичной формой А е) [см. (3.2.3) гл. III] компонент деформации, придем к принципу минимума потенциальной энергии системы исходя же из квадратичной формы Л (а) компонент тензора напряжений [(3.2.8) гл. III], получим принцип минимума дополнительной работы. В первом принципе варьируются перемещения, во втором — компоненты напряжения. Наконец, в смешанном принципе стационарности удельная  [c.148]


Как и в 3.8, будем постулировать существование функций А, Ф и Р. Эти функции состояния не зависят от выбора системы координат, так что функционал (3.69) инвариантен. Следовательно, если принцип стационарности потенциальной энергии выведен в прямоугольных декартовых координатах, то его можно записать и в произвольной криволинейной системе координат через Ф с использованием закона преобразования де( рмаций (4.61), соотношений деформации—перемещения (4.40) и правила преобразования компонент перемещений  [c.116]

Модели для анализа напряжений и деформаций часто оказываются более удобными, если представлены в интегральной форме, вытекающей из вариационных принципов механики. Вариационный принцип Лагранжа (принцип потенциальной энергии) гласит, что потенциальная энергия системы получает стационарное значение на тех кинематически возможных перемещениях, отвечающих заданным граничным условиям, которые удовлетворяют условиям равновесия. Поэтому модель представляют в виде выражения потенциальной энергии П системы как разности энергии деформации Э и работы массовых и приложенных поверхностных сил А  [c.158]

Обратимся к рассмотренному ранее примеру с рычажными весами. Формула равновесия весов (11.8) была получена с использованием условия (11.4) экстремальной функции t/(0). Но следствием принципа виртуальных перемещений является не просто экстремальность, а именно минимальность потенциальной энергии системы. Для выяснения вида стационарной точки на кривой t/(0) надо, как известно, исследовать поведение производных этой функции более высокого порядка, чем первый. Иначе говоря, необходимое условие (11.7) надо дополнить условием, достаточным для устойчивого равновесия fsW>Q, или (52[//<302)а,(>О, т. е.  [c.114]

Действие этого постулата не ограничивается областью статики. Он приложим также и к динамике, где принцип виртуальных перемещений соответствующим образом обобщается принципом Даламбера. Так как все основные вариационные принципы механики — принципы Эйлера, Лагранжа, Якоби, Гамильтона — являются всего лишь другими математическими формулировками принципа Даламбера, постулат А есть в сущности единственный постулат аналитической механики и поэтому играет фундаментальную роль Принцип виртуальных перемещений приобретает особое значение в важном частном случае, когда приложенная сила Fi моногенная, т. е. когда она получается из одной скалярной функции — силовой. В этом случае виртуальная работа равна вариации силовой функции LJ qi,. .., ( ). Так как силовая функция равна потенциальной энергии, взятой с обратным знаком, то можно сказать, что состояние равновесия механической системы характеризуется стационарностью потенциальной энергии, т. е. условием  [c.100]


Разновидностью статического критерия является критерий энергетический. В основе этого критерия лежат два фундаментальных принципа механики сплошных сред принцип возможных перемещений и принцип возможных изменений напряженного состояния. Из принципа возможных перемещений непосредственно следует условие стационарности полной потенциальной энергии системы бП = О, согласно которому из всех перемещений, удовлетворяющих граничным условиям, перемещения, удовлетворяющие уравнениям равновесия, придают полной потенциальной энергии стационарное значение. Из принципа возможных изменений напряженного состояния следует условие стационарности дополнительной энергии, согласно которому из всех возможных напряжений, удовлетворяющих уравнениям равновесия и граничным условиям, напряжения, удовлетворяющие уравнениям неразрывности деформаций, придают дополнительной энергии стационарное значение.  [c.53]

Очевидно, что 1 1 представляет вариацию потенциальной энергии системы (2), равную согласно принципу стационарности ( 16) нулю, если -конфигурация равновесна  [c.332]

Разрешающие уравнения метода перемещений получены в гл 5. на основе начала виртуальных перемещений или принципа стационарности полной потенциальной энергии системы. Разрешающие уравнения метода сил можно получить из начала виртуальных усилий или принципа стационарности дополнительной энергии. Действительно, используя начало виртуальных усилий (5.24), подставим в него статически допустимую вариацию вектора узловых усилий  [c.159]

Равенство (3.34) показывает, что для истинных напряжений (или внутренних усилий) линейно-упругая система имеет потенциальную энергию деформации стационарной (для устойчивого равновесия минимальной). Поскольку энергия U численно равна работе внутренних сил, которая, в свою очередь, равна работе внешних сил деформированного тела, это положение часто называют принципом наименьшей работы.  [c.63]

Резюме. Принцип виртуальных перемещений требует, чтобы в состоянии равновесия равнялась нулю работа приложенных сил при любой бесконечно малой вариации конфигурации системы, при которой не нарушаются наложенные кинематические связи. Для моно-генных сил это приводит к следующему условию в состоянии равновесия потенциальная энергия должна иметь стационарное значение по отношению ко всем кинематически возможным вариациям.  [c.100]

Резюме. При помощи интегрирования по времени виртуальная работа сил инерции может быть преобразована в истинную вариацию. Таким образом, принцип Даламбера может быть математически переформулирован в принцип Гамильтона последний требует стационарности определенного интеграла, взятого по времени, от функции Лагранжа L, где L — разность между кинетической и потенциальной энергиями. Варьирование должно производиться при фиксированных граничных положениях системы (н фиксированном интервале времени).  [c.140]

Однако эти ЪМ условия являются требованиями того, чтобы функция V имела стационарное значение. Таким образом, при равновесии консервативной системы ее потенциальная энергия имеет стационарное значение. Выражение принцип  [c.16]

Существует также теорема [3], которую часто называют принципом минимума полной потенциальной энергии или теоремой Лагранжа в состоянии равновесия консервативной системы ее полная потенциальная энергия принимает стационарное значение, причем в устойчивом состоянии равновесия это стационарное значение — минимум. Подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы — как линейные, так и нелинейные. Нелинейность консервативной системы может быть обусловлена двумя причинами геометрическими и физическими. Геометрические нелинейности обычно связаны с большими перемещениями гибких тонкостенных систем типа стержней, мембран или оболочек. Физическая нелинейность — это нелинейность зависимости между напряжениями и деформациями в упругом твердом теле.  [c.77]


В гибридных методах используются не только обобщенные формулировки известных энергетических принципов, но и представление характеристик элемента с помощью нескольких полей. Например, внутри элемента задается один вид поля перемещений и (или) напряжений, на границе элемента задается независимо в другой форме поле напряжений и (или) перемещений. Все поля, за исключением одного, задаются в терминах обобщенных параметров. Последнее поле выражается в терминах физических степеней свободы. Соответствующее энергетическое выражение (модификация потенциальной и дополнительной энергии) записывается вначале в терминах обоих классов параметров и требуется выполнение условий стационарности для набора обобщенных параметров. В результате приходим к системе уравнений для обобщенных параметров, выраженных в терминах физических степеней свободы. Эти соотношения используются для исключения обобщенных параметров из выражения для энергии. Получающееся в результате выражение для энергии содержит в этом случае искомую матрицу жесткости или податливости в обычной форме.  [c.199]

Принцип Эйлера — Лагранжа. В отличие от предыдущего, этот принцип применим только к консервативным системам, т.е. системам, полная механическая энергия которых сохраняется. В таком случае идеальные голономные связи являются стационарными, а действующие силы потенциальные стационарные.  [c.287]

Этот принцип противопоставляется принципу стационарности потенциальной энергии системы. Здесь речь идет об отборе из множества статически возможных напряженных соостояний состояния, "фактически реализуемого в упругом теле, тогда как принцип стационарности потенциальной энергии не содержит упоминаний о напряжениях, а выражает свойство истинного поля перемещений.  [c.141]

Вариационные принципы, в которых истинность указанных полей гарантирует стационарность частных функционалов, постулируют выполнение и тех или иных дополнительных условий. В 15.11 и 15.12 подробно рассматриваются два из них —вариационный принцип Лагранжа (потенциальной энергии системы) и вариационный принцип Менабреа — Кастильяно (дополнительной работы) применительно к стержневым системам и пространственной задаче классической (линейной) теории упругости. В 15.20 мы возвратимся к этим принципам еще раз. В 15.21 обсуждаются вариационные принципы, соответствующие другим частным функционалам.  [c.457]

Приведенные выше два примера показывают, как можно использовать метод потенциальной эдергии при расчете конструкций, проявляющих либо линейное, либо нелинейное поведение. Энергия деформации записывается через неизвестные перемещения узлов, а затем складывается с потенциальной энергией нагрузок, что дает полную энергию. Применение принципа стационарности потенциальной энергии приводит к системе уравнений, содержащей столько уравнений, сколько имеется неизвестных перемещений узлов. Эти уравнения представляют собой уравнения равновесия метода перемещений (или метода жесткостей, если конструкция имеет линейное поведение) и могут быть решены относительно неизвестных перемещений.  [c.504]

Матричное уравнение (5.8) следует также из принципа стационарности полной энергии системы. Как известно, полная энергия системы складывается из потенциальной энергии деформации и взятой со знаком минус работы внешних нагрузок на окончательных перемещениях. По нциальная энергия деформации всей системы складывается из потенциальной энергии деформации отдельных элементов  [c.96]

Уравнение (6.44) выражает собой так называемый принцип потенциальной энергии при заданных внешних силах и граничных условиях действительные перемещения ui таковы, что для любых возможных перемещений первая вариация полной потенциальной энергии равна нулю, т. е. полная потенциальная энергия П имеет стационарное значение. Можно показать (теорема Лагранжа—Дирихле), что в положении устойчивого равновесия полная потенциальная энергия системы имеет минимальное значение, т. е. вторая вариация д П>0.  [c.123]

Поэтому на уравнения (11.44) следует, что из всех возможных перемеш,ений и, V, гг , удовлетворяющ,их связям, наложенным па упругое тело, в действительности могут иметь место только те, при которых потенциальная энергия системы Э имеет стационарное значение. Взяв вторую вариацию Э, можно показать, что в рассматриваемом нами случае потенциальная энергия имеет минимальное значение. Это составляет принцип минимума для перемеш,ений.  [c.317]

Для вывода уравнений равновесия в перемещениях будем исходить из принципа возможных перемещений, ёогЛасно которому полная потенциальная энергия системы ЧГ, равнай разности мен цу упругим потенциалом я и работой внешних сил А, должна для дейстдатедьньрс -1Йренещ ний иметь стационарное значение. -  [c.101]

Можно доказать и более общую теорему [28J, которую часто называют принципом минимума полной потенциальной энергии в положении равновесия полная потёнцильная энергия консервативной системы имеет стационарное значение, причем положение равновесия устойчиво, когда это стационарное значение-минимум.  [c.24]

Уравнения устойчивости и соответствующие краевые условия согласно принципу Треффца получаются как уравнения Остроградского—Эйлера и естественные граничные условия для вариационной задачи о стационарности функционала 6 5. Этот функционал представляет собой вторую специальную вариацию полной энергии деформированной системы. Если внешние силы являются потенциальными, то вариационную задачу можно сформулировать через энергию деформации U  [c.210]



Смотреть страницы где упоминается термин Принцип стационарности потенциальной энергии системы : [c.139]    [c.43]    [c.95]    [c.6]   
Смотреть главы в:

Нелинейная теория упругости  -> Принцип стационарности потенциальной энергии системы



ПОИСК



Начало виртуальных перемещений и принцип стационарности полной потенциальной энергии системы — Начало виртуальных усилий и принцип стационарности дополнительной энергии

Потенциальная энергия системы

Принцип потенциальной энергии

Принцип энергии

Система потенциальная

Система с стационарная

Стационарности потенциальной энергии принцип

Энергия потенциальная

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте