Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания валов и осей

Силы, периодически изменяющиеся по величине или направлению, являются основной причиной возникновения вынужденных колебаний валов и осей. Однако колебательные процессы могут возникать и от действия постоянных по величине, а иногда и по направлению сил. Свободное колебательное движение валов и осей может быть изгибным (поперечным) или крутильным (угловым). Период и частота этих колебаний зависят от жесткости вала, распределения масс, формы упругой линии вала, гироскопического эффекта от вращающихся масс вала и деталей, расположенных на валу, влияния перерезывающих сил, осевых сил и т. д. Уточненные расчеты многомассовых систем довольно сложны и разрабатываются теорией колебаний. Свободные (собственные) колебания происходят только под действием сил упругости самой системы и не представляют опасности для прочности вала, так как внутренние сопротивления трения в материале приводят к их затуханию. Когда частота или период вынужденных и свободных колебании со-  [c.286]


Проверочный расчет на антирезонансные свойства при поперечных колебаниях валов и осей заключается в определении критической частоты вращения ( р), при которой возникает резонанс. При установившемся режиме работы машины центробежная сила С уравновешивается внутренними силами упругости вала или оси  [c.425]

Основная частота собственных колебаний валов и осей может быть определена по формуле  [c.335]

Основная частота собственных изгибных колебаний валов и осей может быть найдена по формуле Релея  [c.128]

Колебания валов и осей  [c.327]

При повышенных требованиях к жесткости валов и осей она проверяется расчетом. Для быстроходных машин, в которых валы могут выходить из строя в результат недопустимых вибраций, производится расчет на колебания.  [c.46]

Смазка опор уменьшает трение, износ и нагрев рабочих поверхностей обеспечивает отвод теплоты предохраняет поверхности трения от загрязнения и коррозии повышает плавность вращения валов и осей уменьшает шум и в некоторой степени компенсирует колебания нагрузок. Для смазки применяют жидкие масла, консистентные смазки (густые мази) и твердые смазочные вещества.  [c.447]

Основное практическое значение для валов имеют расчеты частот собственных колебаний для предотвращения резонанса колебаний, т. е. нарастания амплитуд колебаний при совпадении или кратности частоты возмущающих сил и собственной частоты колебаний. В валах наблюдаются поперечные или изгибные колебания, а также изгибно-крутильные колебания. Частоты собственных колебаний для простейших валов и осей подсчитывают по формулам, приведенным в табл. 16.10.  [c.333]

Такая ситуация, в частности, возникает при расчете колебаний планетарного редуктора, где в качестве одной из подсистем принимается зубчатая передача. Предполагается, что в диапазоне 500—1000 гг часть элементов зубчатой передачи колеблется как сосредоточенные массы на жесткостях зацеплений валов и осей. Зубчатые барабаны, эпициклы, корпус редуктора и фундамент в указанном диапазоне частот приходится рассматривать как подсистемы с распределенными параметрами.  [c.27]

Укажем здесь на приложение метода и важным задачам об уравновешивании машин. При неточности изготовления и посадки деталей на вращающиеся части машины, а также вследствие конструктивной формы самих деталей (коленчатые валы, кулачки и эксцентрики) — центры тяжести звеньев оказываются не на оси вращения. Последнее обстоятельство вызывает динамические силы, дополнительно нагружающие кинематические пары. Периодичность действия этих сил вызывает упругие колебания валов и рам машин, ослабление болтовых связей, вибрацию фундаментов и т. п. Современные машины (турбовинтовые, активные и реактивные двигатели) работают на больших скоростях, поэтому устранение динамических явлений имеет огромное значение. При этом необходимо стремиться к тому, чтобы центр тяжести совпадал с центром вращения е = О, а ось вращения была бы одной из главных J= Jy = О осей инерции. В качестве  [c.268]


При колебаниях вала и, следовательно, оси Oj О2 датчика катушка D поворачивается по отношению к неподвижной катушке В. Это вызывает  [c.527]

К активным элементам относятся исполнительные органы строительных машин — ковши экскаваторов, дробящие плиты камнедробилок, навесное оборудование бульдозеров и т. д. ва-, лы, детали передач, муфты и т. д., участвующие непосредственно в передаче мощности подшипники, воспринимающие в опорах валов и осей рабочие нагрузки кривошипно-шатунные и другие аналогичные механизмы, предназначенные для преобразования одного вида движения в другое пружины, рессоры и амортизаторы, предназначенные для смягчения резких колебаний рабочих нагрузок. К базовым элементам, обеспечивающим правильное взаимное расположение активных элементов, относятся станины, рамы, платформы, несущие металлоконструкции и т. п. Наконец, к вспомогательным элементам относятся детали механизмов управления машинами — рычаги, педали, штурвалы, тяги и т. д., или, например, элементы, предназначенные для обеспечения безопасности обслуживания машин — всевозможные ограждения, ограничители хода, грузоподъемности и т. д.  [c.135]

Спроектированные валы и оси с учетом обеспечения статической или усталостной прочности иногда выходят из строя вследствие недостаточной их жесткости или из-за колебаний. Кроме того, малая жесткость нарушает нормальную работу зубчатых передач и подшипников. Валы и оси дополнительно рассчитывают на жесткость и колебания.  [c.268]

Валы и оси следует рассчитывать на прочность, жесткость и колебания.  [c.58]

Моторно-осевые подшипники двигателя, закрепленного на раме, не опираются на ось 2, а поддерживают полый вал 3 — цилиндрическую гильзу наружным диаметром 315 мм, на которой укреплена ведомая шестерня тягового редуктора. Полый вал 3 охватывает ось 2 колесной пары. Радиальный зазор между внутренней поверхностью полого вала и осью составляет в среднем 35 мм. Такая его величина полностью исключает возможность соприкосновения этих деталей при колебаниях ходовых частей.  [c.296]

Считая, что мотор вращается с угловой скоростью со и что при горизонтальном положении отрезка OjB пружина ЛВ находится в недеформированном состоянии, определить амплитуду вынужденных колебаний диска, если на него действуют силы сопротивления, момент которых относительно оси вращения пропорционален угловой скорости диска ([д. — коэффициент пропорциональности). Массой вала и отклонением пружины от вертикали пренебречь коэффициент жесткости вала на кручение принять равным с,.  [c.466]

Современное судно несет большое число вращающихся тел это — маховики двигателей, гребные винты с их валами, роторы динамомашин, гребные колеса колесных пароходов и т. д. Оси вращения располагаются или по продольной, или по поперечной оси корпуса судна, или вертикально. При своем движении судно может совершать колебания вокруг продольной оси (боковая 7-1 качка) или поперечной оси (килевая  [c.370]

Интересно отметить, что при скоростях вращения вала, больших критических, амплитуда колебания вала существенно уменьшается, колебания затухают. Опыты показывают, что при (o>(ti центр тяжести диска располагается между линией, соединяющей опоры, и искривленной осью вала (рис. 553, б). В этом случае уравнение для определения прогиба будет иметь вид  [c.612]

Зная коэффициенты распределения, графически изобразим формы главных колебаний (рис. 43). Амплитуду колебаний первого диска принимаем за единицу и условно откладываем полученные соотношения для амплитуд по перпендикулярам к оси вала — положительные вверх, а отрицательные вниз. Соединяя концы отрезков последовательно прямыми линиями, получаем графики, изображающие формы главных колебаний вала (рис. 43).  [c.95]

Откладывая амплитуды колебаний дисков условно перпендикулярными к оси вала и соединяя концы построенных отрезков последовательно прямыми линиями, получаем графики, изображающие формы главных колебаний вала (рис. 80).  [c.196]


Изгиб валов и поворот дисков колес вокруг осей X п Y вызываются исключительно усилиями в зацеплении, величина которых определяется крутильными колебаниями в системе. Поскольку при указанном выше соотношении частот прогибы валов и углы поворота дисков колес относительно осей X и Y связаны с действующими усилиями статическими зависимостями, они будут прямо пропорциональны разности переносных углов поворота колес вокруг оси Z, определяющей усилие в зацеплении, т. е. будут справедливы следующие зависимости  [c.247]

Зависимость частоты X собственных колебаний вала в неподвижной системе координат от угловой скорости со можно представить в виде графика, изображенного на фиг. 3. 5, где по горизонтальной оси откладывается со, а по вертикальной оси X, а функция X = А (со) изображается рядом ветвей кривой, расположенных косо-симметрично относительно осей 01 и Я. Точки пересечения ветвей кривой с осью А соответствуют частотам собственных колебаний вала при отсутствии вращения. Точки пересечения ветвей кривой с лучом Я, = со соответствуют значениям критических скоростей прямой прецессии точки пересечения кривых с лучом А, = —со — значениям критических скоростей обратной прецессии. Кривая, как правило, состоит не менее, чем из одной пары ветвей число пар может быть неограниченным. Ветви располагаются косо-симметрично относительно осей (при замене со на —со прямая прецессия становится обратной и наоборот). Ввиду этого можно рассматривать либо правую, либо верхнюю полуплоскость (последнее несколько удобнее).  [c.117]

У быстроходных машин появляются колебания валов и осей при нед6ст т6 чнбй балансировке насаженных на них деталей (рис. 283). Если частота возмущающих сил совпадает или кратна частоте собственных колебаний вала (оси), то при критической частоте вращения ( ,< ) возникает резонанс. Различают несколько разновидностей колебаний валов и осей поперечные (изгибные) колебания, угловые (крутильные) и изгибно-крутильные. Последние две разновидности колебаний характерны для специальных устройств (турбины, буровые станки и др.) и рассмотрены в особых курсах.  [c.425]

Жесткость валов и осей при изгибе должна быть достаточной для обеспечения правильной работы передач зацеплением и иод-ишиников. Для ременных и ценных передач жесткость не имеет существенного значения, однако при недостаточной жесткости ) алоп возможно появление интенсивных колебаний, опасных для узлов машины и окружающей среды. При этом расчет па жесткость свя-  [c.282]

Для обеспечения нормальной работы элементов передач и подшипников валы и оси должны иметь достаточную жесткость. При недостаточной жесткости даже относительно неболь Г ие нагрузки вызывают недопустимые деформации валов и осей, нарушающие нормальную работу машин. Кроме того, при малой жесткости валов и осей возможно появление интенсивных колебаний, опасных не только для элементов данной машины, но и для окружающих сооружений. связи с этим быстроходные оси, валы и червяки, кроме расчетов на прочность и выносливость, как правило, подвергаьэтся проверке на жесткость, а в отдельных конструкциях и на виброустойчивость. При недостаточной жесткости их размеры приходится увеличивать, хотя это и ведет к излишкам материала, не требуемым по условиям прочности.  [c.516]

Автоматическая элек-троимпульсная наплавка, называемая также вибродуговой и виброконтактно й, состоит в наращи-ванни металла вибрирующим электродом в струе электролита или под слоем флюса (рис. 139). Электрод, пропущенный через вибрирующий мундштук, совершает вместе с ним колебания относительно наплавляемой детали с частотой 100 При соприкосновении его с деталью через зону контакта проходят мощные импульсы тока короткого замыкания, под действием которых к наплавляемой детали привариваются частицы металла (контактная сварка) и одновременно в катушке самоиндукции накапливается энергия магнитного поля. При отрыве электрода происходит расплавление металла под действием импульсных разрядов исчезающего магнитного поля (дуговая наплавка). Электролит обеспечивает защиту наплавляемого металла от кислорода и азота воздуха, а также интенсивный отвод тепла, благодаря чему этот процесс характеризуется относительно малым термическим влиянием по сравнению с другими, что важно для деталей, не допускающих коробления (длинные валы и оси, штоки поршней, тормозные шкивы и др.).  [c.315]

Жесткость валов и осей оценивается прогибом в 1лестах посадок деталей или углом закручивания сечений, колебания — критической угловой скоростью.  [c.268]

Определить частоты свободных крутильных колебаний системы, состоящей из двух валов, соединенных зубчатой передачей. Моменты инерции масс, насаженных на валы, и моменты инерции зубчатых колес относительно оси валов имеют величины /i=875-10" кг-см , У2 = 560-10 кг-см , i =3020 кг-см , 2=105 кг-см , передаточное число fe = 21/22 = 5 жесткости валов при кручении i =316X10 Н-см, С2 = 115-10 Н-см массами валов пренебречь.  [c.424]

Дпухклиновые подшипники с ли.моннымн 24), эллиптическими (25) пли овальными (26) отверстиями применяют редко и только при нагрузке постоянного направления, так как они гасят колебания только в направле-пни. малой оси отверстия и, наоборот, способствуют возникновению колебаний вала в направлении большой оси.  [c.410]

Если центр тяжести С вала мотора смещен от оси О, то на мотор будет действовать передаваемая через подшипники вала сила Q, направленная вдоль ОС (рис. 266 такие силы рассматриваются в 136). Проекция силы Q на ось Ох, равная Q =Qsin Ш ((I) — угловая скорость вала), и будет возмущающей силой, действующей на мотор частота этой силы р=ш. Следовательно, период вынужденных колебаний Тд=2л./(о.  [c.248]

Спусковые регуляторы действуют периодически и применяются при малой частоте вращения оси, угловая скорость которой регулируется. На рис. 31.12 показан спусковой регулятор с автоколебательной системой, состоящий из маятника-регулятора 7 и жестко связанного с ним анкера 3. Анкер вместе с маятником совершает колебания вокруг неподвижной оси 2. На анкере укреплены палетты I 4, которые удерживают ходовое колесо 5 от вращения. Движущий мо.мент на валу 6 колеса создается силой тяжести О гири. При переходе через среднее положение палетты позволяют колесу повернуться на один зуб. При повороте зуб толкает анкер и сообщает колебательной системе импульс, необходимый для поддержания ее непрерывных колебаний, затем в крайнем положении маятника происходит остановка ходового колеса, после чего этот процесс повторяется. Период собственных колебаний маятника Гм связан с параметрами регулятора формулой  [c.399]


Проверочный расчет валов. Проверочный расчет валов производится на усталостную прочность, статическую прочность и жест-кость, а в отдельных случаях и на колебания. Такой расчет выпол-няется на основе проектного расчета, конструирования вала и подбора подшипников. Для этой цели составляется уточненная расчетная схема, полученная из эскизной компоновки. Строят. чпюрь изгибающих и крутящих моментов. Если нагрузки действуют в разных плоскостях, их раскладывают на составляющие по двум взаимно перпендикулярным направлениям и строят эпюры изгибающих моментов отдельно в каждой плоскости. Изложенное представлено на рис. 3.123. Так, на рис. 3.123, б приведена схема нагружения ва.та в плоскости ху, а на рис. 3.123, в — эпюра изгибающих моментов (моменты имеют двойной индекс х2, что означает момент относительно оси X в сечении под червячным колесо.м, которое в червячном зацеплении отмечается индексом 2).  [c.515]

Электрический мотор массы Mi установлен на балке, жесткость которой равна с. На вал мотора насажен груз массы Ml на расстоянии I от оси вала. Угловая скорость мотора С) — onst. Определить амплитуду вынужденных колебаний мотора и критическое число его оборотов в минуту, пренебрегая массой балки и сопротивлением движению.  [c.272]

Натяжение ремня — необходимое условие работы ременных передач. Оно осуществляется 1) вследствие упругости ремня - укорочением его при сшивке, передвижением одного вала (рис. 251, а) или с помощью нажимного ролика 2) под действием силы тяжести качающейся системы или силы пружины 3) автоматически, в результате реактивного момента, возникающего на статоре двигателя (рис. 251,6). Так как. на практике большинство передач работает с переменным режимом нагрузки, то ремни с постоянным предварительным натяжением в период недогрузок оказываются излишне натянутыми, что ведет к резкому снижению долговечнорти. С этих позиций целесообразнее применять третий способ, при котором натяжение меняется в зависимости от нагрузки и срок службы ремня наибольший. Однако автоматическое натяжение в реверсивных передачах с непараллельными осями валов применить нельзя. Для оценки ременной передачи сравним ее с зубчатой передачей как наиболее распространенной. При этом можно отметить следующие основные преимущества ременной передачи 1) плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях 2) предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня 3) предохранение механизмов от перегрузки за счет возможного проскальзывания ремня 4) возможность передачи движения на значительное расстояние (более 15 м) при малых диаметрах шкивов 5) простота конструкции и эксплуатации. Основными недостатками ременной передачи являются 1) повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня 2) некоторое непостоянство передаточного отношения из-за наличия упругого скольжения 3) низкая долговечность ремня (в пределах от 1000 до 5000 ч) 4) невозможность выполнения малогабаритных передач. Ременные передачи применяют  [c.278]

В том случае, когда частота % собственных колебаний вала (в неподвижной системе координат) не зависит от угловой скорости, X = onst, и график частоты состоит из прямых, параллельных оси со.  [c.117]

Машина, схема которой иредставлена на рис. 3, а, позволяет испытывать образцы на усталость при кручении, при изгибе пли при комбинированном нагружении изгибом и кручением. Оси маховиков 3 ц 6 оперты в подшипниках 4 и 7. На маховике 3 расположен инерционный возбудитель колебаний с вращающимися неуравновешенными массами 2. Вращение возбудителя осу ществляется через гибкий вал от элеК тродвигателя I. С маховиками жестко соединены серповидные захваты 5 и 8. При закреплении образца в захватах вдоль оси X—X будет осуществляться переменное кручение, а вдоль оси К— Y — переменный изгиб. При расположении образца под некоторым углом к этим осям будет осуществляться соответствующее комбинированпое нагружение. Крутящий момент, прикладываемый к серповидным захватам, можно определять по амплитуде колебаний маховика 6, момент инерции массы которого должен быть известен. Можно также встроить датчик крутящего момента. Изгибающий и крутящий моменты, действующие на образец, вычисляют в зависимости от выбранного угла а между геометрической осью образца и осью колебаний маховиков.  [c.137]

Жесткость спиц оказывает влияние не только на изгибные и крутильные колебания вала, но и на крутильные колебания маховика. Если ступица с валом повернется округ оси вращения на угол Фд. (фиг. 178) так, что обод останется на месте, то на спицы и на ступицу будут действовать изгибающий момент Mq и поперечная сила Р. Опять предполагаем, что обод абсолютно жесткий. Гаким образом, получаем  [c.392]

Рассмотрим вынужденные колебания гиросистемы в поле сил тяжести под воздействием неуравновешенности. Предположим, что статическая неуравновешенность создается точечными массами 01 ( oi i) и " 02 (" 02 " 2)5 расположенными на верхнем и нижнем роторах на расстояниях иГд от оси враш,ения их дисбалансы равны = т-оЛ и 63 = Возникновение динамической неуравновешенности обусловлено несовпадением касательных к упругой линии вала на его концах и осей симметрии сосредоточенных масс, причем углы между ними соответственно и щ. Ось 0- Xi подвижной системы координат OiX[y[Z] , неизменно связанной с ротором, совместим с вектором ei. Тогда комплексные силы Р , Рд и моменты Л/д в отличие от (1), (2), (8) и (9) будут  [c.40]


Смотреть страницы где упоминается термин Колебания валов и осей : [c.421]    [c.535]    [c.438]    [c.437]    [c.196]    [c.99]    [c.577]    [c.439]    [c.423]    [c.148]    [c.264]   
Смотреть главы в:

Детали машин  -> Колебания валов и осей



ПОИСК



Колебания валов

Очки

Очко 58, XIV



© 2025 Mash-xxl.info Реклама на сайте