Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры и скорости деформации на процесс деформирования

Учитывая такое влияние температуры и скорости деформации на ход возврата и рекристаллизации, как раз-упрочняющих процессов, общепринятым считается разделять процессы деформирования на горячие и холодные (в отличие от понятия деформации металла в холод-  [c.192]

При холодной деформации влияние скорости деформации на сопротивление деформированию в большинстве случаев мало. Однако следует иметь в виду, что при высокоскоростных процессах холодного деформирования в области температур с полным упрочнением влияние увеличения скорости может оказаться настолько большим, что оно может привести к уменьшению сопротивления деформированию. При расчете усилий, потребных для деформирования стали как в холодном, так и в горячем состояниях, результаты испытаний образцов на разрывных машинах (истинное сопротивление при холодной деформации и предел прочности при горячей деформации) необходимо умно-  [c.30]


Сопротивление деформированию инструментальных Сталей в основном зависит от процентного содержания углерода. Чем больше в них углерода, тем ниже пластичность и выше сопротивление деформированию. Наличие в этих сталях вредных примесей (особенно серы и фосфора) приводит к понижению пластичности из-за появления красно- или синеломкости. Влияние легируюш,их элементов иа пластичность и механические свойства инструментальных сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента. На основе физико-химических (коэффициента теплопроводности, температуры фазовых превращений и др.) и механических свойств (пластичности, сопротивления деформирования устанавливают температурный режим нагрева металла под ковку, температуру начала и конца ковки, выбор схемы процесса ковки и формы бойков, а также степень и скорость деформации.  [c.495]

Эффект упрочнения при ВТМО зависит от температуры аустенизации и деформации, от степени деформации и скорости деформации. Большое влияние на процесс упрочнения при ВТМО оказывает температура, при которой осушествляется пластическая деформация. С понижением температуры деформирования прочность увеличивается. Однако с понижением температуры аустенизации возрастает интенсивность протекания рекристаллизационных процессов при ВТМО.  [c.287]

Приведенные выше данные позволяют сделать заключение о том, что воздействие плазменной дуги на заготовку оказывает влияние на процесс стружкообразования и силы резания не только через термическое разупрочнение обрабатываемого материала, но и через создание в его подповерхностных слоях полей напряжений и деформаций, ведущих к частичному снижению пластичности материала. Отсутствие или недостаточное число экспериментальных данных о показателях пластичности и других параметрах, относящихся к деформированию металлов в области высоких температур и скоростей, не позволяет пока с достаточной степенью полноты количественно оценить влияние этих явлений. Тем более необходимо привлечь внимание исследователей к изучению термических напряжений, вызванных локальным высокоинтенсивным нагревом металлов, в частности малопластичных (чугун, хрупкие стали и наплавки), где работа этих напряжений может оказаться соизмеримой с работой резания, затрачиваемой на деформирование и отделение слоя предварительно напряженного материала.  [c.69]


Влияние температуры металла на практике нельзя рассматривать в отрыве от скоростных условий деформирования. Как следует из определения горячей деформации, скорость деформирования при ней должна обеспечить полное протекание процесса рекристаллизации, скорость которой зависит от температуры. С увеличением скорости деформации при постоянной температуре увеличивается влияние упрочнения над рекристаллизационным разупрочнением и давления при той же деформации возрастают (см. рис. 3.3). Поэтому для некоторых особо чувствительных к увеличению скорости деформирования сплавов, например алюминиевых и магниевых, горячее деформирование рекомендуется осуществлять на тихоходных гидравлических прессах, а не на молотах.  [c.65]

Это влияние особенно значительно, если металл деформируется при высоких температурах и напряжениях. В таком случае, несмотря на сравнительно небольшое время деформирования, существенное значение имеет вязкость металла, и поэтому расчеты технологических процессов обработки металлов следует основывать на уравнениях состояния, в которых содержатся скорости деформаций, т. е. на уравнениях, отражающих реономные свойства металлов — на уравнениях теорий ползучести.  [c.5]

Влияние отдельных факторов на процесс обработки давлением. Пластичность металла зависит от его химического состава, температуры нагрева, скорости и степени деформации, условий трения на поверхности контакта металла и инструмента, а также схемы напряженно-деформированного состояния.  [c.153]

Для изотермического деформирования применяют гидравлические прессы, хотя для. этой цели можно использовать и другое оборудование. При этом скорость деформации может быть сколь угодно малой величиной и нижний ее предел ограничен только производительностью процесса. При уменьшении скорости деформации можно штамповать при значительно меньшем по сравнению с обычными условиями горячей штамповки сопротивлении металла деформированию. Например, сравнивали удельное усилие осадки в торец образцов диаметром 15 и высотой 20 мм из сплава ВТЗ-1 в обычных условиях на кривошипном прессе и в изотермических условиях на гидравлическом прессе без смазки при температуре 900° С. Температура нагрева штампов при штамповке на кривошипном прессе составляла 250° С. При деформации —60 % подстуживание торцов заготовки существенно не влияет на усилие деформирования. Отношение удельных усилий при штамповке на кривошипном прессе в условиях изотермической штамповки равно 2. Разница в усилии определяется только влиянием скорости деформации. Охлаждение заготовки при уменьшении ее толщины увеличивает усилие осадки на кривошипном прессе. При деформации 80% отношение удельных усилий составляет уже 2,8 [35].  [c.22]

В общем виде здесь будут исследоваться только однородные напряженные или деформированные состояния. В этой главе мы будем интересоваться в первую очередь влиянием температуры на упругие свойства тел позже будут рассмотрены влияние температуры на пластичность, вязкость или скорость изменения деформаций со временем. Так же как и в термодинамической теории идеальных газов, удобно выделить специальные виды процессов деформирования и нагружения твердого тела и описать, например, те из них, при которых изменения температуры вследствие нагревания или охлаждения тела происходят при поддерживаемой на заданном уровне деформации или напряжении. Удобно также различать изотермические и адиабатические изменения состояния как специальные виды процессов нагружения. При изотермическом изменении состояния температура поддерживается постоянной.  [c.15]

Влияние температуры на обычные механические свойства мягкой (корабельной) стали иллюстрируется графиками на рис. 16.63, на котором можно заметить характерное снижение предела прочности агтах при 100° С и повышение его при температуре около 250° С, приписываемые старению. Интересны кривые напряжение — деформация для этой мягкой стали, приведенные на рис. 16.62 для восьми различных значений температуры ниже 0°С при одной и той же постоянной скорости деформирования w = 0,00208 /сек. На этом графике хорошо заметно, как процесс перехода от верхнего к нижнему пределу текучести, отчетливо выраженный для этой стали, изменяется при понижении температуры от комнатной до минимального уровня, равного 4° К- Верхний предел текучести возрастает при этом до учетверенной величины его значения при температуре 25° С. При температурах —269 и —200° С имеет место хрупкое разрушение при начальном падении нагрузки, однако в интервале от —196 до —160° С мягкая сталь может получать некоторую пластическую деформацию (до 14%), прежде чем наступит внезапное хрупкое разрушение.  [c.737]


Пластические свойства — свойства, характеризующие способность металла к деформированию. На пластические свойства металла оказывают влияние его состав, температура деформации, скорость деформации, форма и размеры деформируемой полосы, сочетание процессов наклепа и рекристаллизации и др.  [c.233]

В районе температур 1050—1100° как при статическом, так и при динамическом деформировании интервалы критических деформаций практически не изменяются, что можно объяснить одинаковой степенью развития разупрочняющих процессов в пределах скоростей, исследованных в работе. В этом случае при разных скоростях деформации механизм деформирования соответствует горячему, а поэтому скорость деформации заметного влияния на процесс рекристаллизации не оказывает.  [c.117]

Известно, что в процессе нагрева деформируемые магниевые сплавы не претерпевают каких-либо фазовых превращений. Степень растворимости упрочняющих фаз также не может оказать существенного влияния на скорость и продолжительность нагрева этих сплавов. Высокая теплопроводность магниевых сплавов позволяет нагревать их перед деформацией с большой скоростью без опасения возникновения термических напряжений в слитках. При максимальном перепаде температур между центральной и наружными зонами 14°, который был установлен экспериментально для заготовок разных размеров, трещин обнаружено не было. Поэтому нагрев магниевых сплавов в практике кузнечно-прессовых цехов может быть допущен с высокой скоростью. Продолжительность выдержки металла в нем при данной температуре имеет для магниевых сплавов первостепенное значение. Она оказывает влияние не только на пластичность сплава, но главным образом на структуру и механические свойства деформированных полуфабрикатов.  [c.216]

В процессе изнашивания вследствие пластического деформирования металла на поверхности трения и влияния напряжений противоположного знака в поверхностном слое объемно-сжатых образцов происходит перераспределение начальных остаточных напряжений. На рис. 112 показаны кривые перераспределения остаточных напряжений в поверхностном слое колец, подвергнутых объемному сжатию при разности температур 580° при разных деформациях растяжения. Из рисунка видно, что при скорости  [c.169]

Первоначально исследовалось главным образом влияние окружающей среды на механические свойства металлических монокристаллов, таких, как олово, свинец, цинк, алюминий, выращиваемых по методу П. Л. Капицы, И. В. Обреимова и методом рекристаллизации. Было установлено, что интенсивность воздействия поверхностно-активных веществ на механические свойства металлических монокристаллов существенно зависит от температуры и скорости деформации (В. И. Лихтман, П. А. Ребиндер и Л. П. Янова, 1947). В то же время при одинаковых температурах и скоростях деформации механические свойства твердых тел и особенно металлов могут меняться в довольно широком диапазоне в зависимости от распределения напряжений внутри образца. Как известно, обычные диаграммы деформации представляют собой усредненные значения сил и деформаций и дают весьма косвенное представление об истинном распределении напряженного и деформированного состояния внутри тела. Количественная сторона этого вопроса весьма сложна, но качественная картина явления довольно полно исследована, начиная по преимуществу с работ Н. Н. Давиденкова (1936). Дело в том, что в процессе деформирования происходит превращение гомогенной механической системы в гетерогенную, причем это превращение заключается в основном в развитии дефектных участков структуры, всегда присутствующих в реальном твердом теле. Как показали эксперименты (В. И. Лихтман и Е. К. Венстрем, 1949), объемное напряженное состояние существенным образом влияет на величину адсорбционного эффекта (например, он возрастает по мере отклонения напряженного состояния вблизи поверхности от состояния всестороннего сжатия см. П. А. Ребиндер, Л. А. Шрейнер и др., 1944, 1949).  [c.434]

Процесс малоцикловой усталости при повышенных температурах, при которых уже проявляется влияние длительности и скорости деформирования на накопление пластической деформации и статического повреждения, неизбежно связан с формой и длительностью цикла. Это способствовало привлечению таких интерпретаций условий термодиклического разрушения, в которых в явной форме отражена частота v = 1/Г, где Т — период цикла. С помощью частотных представлений предлагается также охарактеризовать роль выдержек при постоянной деформации или напряжении, столь свойственных работе металла во многих конструкциях. Анализ соответствующих зависимостей,. вытекающих из опытных данных, предложенных рядом авторов, позволил уравнение кривой малоцикловой усталости в размахах 2г р пластической деформации выразить так [3]  [c.4]

Эффект упрочнения при ВТМО зависит от температуры аустенизации и деформации, от степени деформации и скорости деформации. Больщое влияние на процесс упрочнения при ВТМО оказывает температура, при которой осуществляется пластическая деформация. С понижением температуры деформирования прочность уве-  [c.325]

Влияние скорости и степени деформации на пластичность и сопротивление деформированию носит очень сложный характер. Объясняется это тем, что скорость и степень деформации одновременно оказывают как упрочняющее, так и разупрочняющее действие на деформируемый металл. Так, увеличение степени деформации, с одной стороны, увеличивает упрочнение металла, но, с другой стороны, уменьшая температуру рекристаллизации, одновременно интенсифицирует разупрочнение. В свою очередь, увеличение скорости деформации уменьшает время протекания процесса рекристаллизации и, следовательно, увеличивает упрочнение. Но с увеличением скорости деформации увеличивается количество теплоты пластической деформации, которая не успевает рассеяться в окружающую среду и вызывает разогрев металла. Увеличе 1ие же те.адпературы ведет к более интенсивному разупрочнению.  [c.31]


Влияние скорости деформации. При выполнении технологических операций ковки и штамповки скорости деформации изменяются в широком диапазоне. Наименьшие скорости деформации (lO 1/с) можно наблюдать при штамповке на прессах, а наибольшие — (10 1/с) —при штамповке на высокоскоростных молотах. В литературе имеется много противоречивых сведений о влиянии скорости деформации на сопротивление пластическому деформированию, в том числе и применительно к холодной штамповке выдавливанием. Это объясняется тем, что при увеличении скорости деформации наблюдаются два взаимно противоположных эффекта. Во-первых, при увеличении скорости деформации повышается температура заготовки, поскольку с быстротечностью процесса резко уменьшается рассеяние (отвод) теплоты от заготовки, а с повышением температуры уменьшается напряжение текучести. Во-вторых, при повышении скорости деформации сопротивление деформированию возрастает из-за необходимости преодоления инерционных нагрузок. В результате взаимодействия этих явлений можно наблюдать различное проявление влияния скорости деформации. Так, В. Е. Фаворский при скоростях выдавливания 0,5 м/с наблюдал повышение температуры для алюминия до 230 С, для меди до 380° С и для сталей 10 и 15 до 410° С, что во многих случаях сопровождалось понижением сопротивления деформированию и увеличением пластичности. Экспериментальные исследования, выполненные В. Ф. Ураковым, показывают повышение температуры не более 120° С. Он пришел к выводу, что при скоростях деформирования в пределах 4 — 20 м/с выдавливание осуществляется в адиабатических условиях. Напряжение текучести при переходе от статических условий нагружения (0,002 м/с) к динамическим (4 м/с) возрастает для алюминия на 15%, а для свинца увеличивается в 2,5 раза.  [c.20]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Микромеханизмы возникновения мгновенных пластических деформадий и развивающихся во времени деформаций ползучести тесно связаны между собой, поэтому необходимо учитывать взаимодействие процессов ползучести и пластического деформирования, которое усиливается с ростом температэфы. Кроме того, механические свойства конструкционных материалов изменяются с температурой не только как мгновенная реакция на ее текущее значегше, но и о некоторым запаздыванием вследствие постепенной перестройки микроструктуры материала со скоростью, которая также пропорциональна множителю вида (4.1.1). Все это затрудняет при повышенных температурах раздельное определение характеристик пластичности и ползучести материала в экспериментах и заставляет учитывать взаимное влияние процессов ползучести и пластического деформирования на напряженно-деформированное состояние и работоспособность теплонапряжегшых конструкций [28].  [c.176]

Введение. Известно, что при нормальных температурах влияние фактора времени на деформирование металлов за пределом упругости заметно проявляется при высоких скоростях нагружения (деформирования). Вместе с тем процессы, в которых скорости деформаций составляют (10 10 )с принято считать процессами, которым отвечает диапазон собственно пластического деформирования. Под этим подразумевается, что при данных скоростях процесс деформирования металлов близок к равновесному, а соответствующие деформации значительно превосходят деформации, обусловленные временными эффектами (ползучесть, релаксация и т.д.), что позволяет рассматривать их как собственно пластические. Однако даже при упомянутых скоростях процесс деформирования, строго говоря, не является равновесным. В этом можно убедиться, если, например, в эксперименте на одноосное растяжение при испытании резко изменить скорость нагружения (деформирования) или сделать остановку нагружения, осуществляя вьщержку материала под постоянной нагрузкой, а затем продолжить нагружение. Опыты [1—4], выполненные по таким программам, показьшают, что особенности реализации программы испытания во времени отражаются на виде диаграммы растяжения. Так, в первом случае точке резкого изменения скорости отвечает излом на диаграмме о-е [1-3], а во втором случае при выдержке материала под постоянной нагрузкой происходит накопление деформаций (ползучесть), чему соответствует горизонтальный участок на диаграмме [2—4]. Отмеченные особенности диаграмм указывают на существенную неравновесность процесса деформирования. Вместе с тем влияние на диаграмму деформирования способа реализации программы испытаний во времени носит локальный характер. При удалении от места изменения скорости или этапа выдержки получающиеся зависимости о-е сближаются с зависимостью а-е, отвечающей испытанию с постоянной скоростью нагружения. Это указьшает на то, что процесс деформирования вновь становится близким к равновесному ( квазиравновесным ). Так как при малых скоростях испытаний отклонения зависимостей о—е от соответствующей зависимости для постоянной  [c.29]

Некоторое влияние на характер разрушений оказывает скорость деформации при загружении. Уменьшение скорости способствует образованию пластической деформации повышение — возникновению хрупких разрушений. Формы нагружений, способствующие пластическому разрушению, будем называть мягкими, а хрупкому — жестки.ми. Нагружения при одноосных напряжениях, повышенная темпб(ратура испытаний и медленный процесс деформации конструкции способствуют пластичным разрушениям. Нагружения при многоосных растягивающих напряжениях, низкая температура испытаний и быстрый темп деформирования способствуют образованию хрупких разрушений.  [c.211]


Кривые 3 ш 4 соответствуют неизотермическому циклу с такими же скоростями деформирования в полуциклах растяжения и сжатия. Температура в пределах каждого полуцикла оставалась постоянной растяжение — 650, сжатие — 150 С и изменялась при 0 = 0. Как видно из рис. 5.13, независимо от уровня температуры в полуцикле сжатия кривые 1 и 3 практически совпадают при равных скоростях деформирования и одинаковой амплитуде необратимых деформаций. Вместе с этим был отмечен обратный эффект — влияние деформаций ползучести, развивающихся при высокой температуре, на ход кривой активного нагружения в последующем полуцикле с более низкой температурой. В этом случае в эксперименте наблюдается некоторое смещение кривой активного нагружения вниз по сравнению с неизотермическими испытаниями без выдержек. На рис. 5.14 показаны диаграммы деформирования стали Х18Н9 при неизотермическом нагружении, характерные для стабильного цикла. Нагружение осуществлялось по жесткому режиму с контролируемым законом изменения деформаций, температура изменялась в момент перехода через нуль по напряжениям от 150 до 650° С в процессе одноминутной выдержки. Кривые 1 ж 2 соответствуют циклу без выдержки, 3 и 4 — циклу с выдержкой при растяжении. Выдержка осуществлялась при 0 = onst до момента достижения заданного значения деформации. Как следует из рис. 5.14, смещение кривой 4 относительно кривой 2 составляет 10—15%. Отмеченное влияние деформаций ползучести при высокой температуре на активное нагружение при более низкой температуре может быть описано, как уже указывалось выше для изотермического случая, с использованием подходов, изложенных в главах 6, 7.  [c.126]

Наиболее важная микроструктурная- перестройка, которая происходит в процессе ползучести, заключается в образовании разориентированных субзерен (полигонизация), разделенных стенками дислокаций. Стенки образу ются от перераспределения геометрически необходимых дислокаций, которые согласовывают пластические несовместимости между зернами или между образцом из монокристалла и наковальнями. Субзерновая структура находится в состоянии динамического развития. Образующиеся стенки дислокаций мигрирует под действием напряжения и разрушаются. Резо-риентация стенок увеличивается с ростом деформации до тех пор, пока в результате их вращения без миграции не установится рекристаллизован-ная зерновая структура. При более высоких значениях напряжения и температуры увеличиваются силы, вызывающие миграцию границ, а также их подвижность, и границы могут мигрировать. Размер как субзерен, так и рекристаллизованных зерен зависит от приложенного напряжения и уменьшается по мере его возрастания. Эмпирические соотношения между размером зерен или субзерен и напряжением устанавливаются экспериментально и используются для того, чтобы восстановить напряжение, которое вызвало естественное деформирование горных пород. Однако представление о том, что размер субзерен или зерен равновесен при Данном напряжении, не обосновано. Размер субзерен не является независимой переменной и не оказывает существенного влияния на скорость ползучести, если только он не зафиксирован каким-либо образом. Преобразования зерен в результате динамической рекристаллизации, по-видимому, недостаточно, чтобы вызвать изменение механизма ползучести от описываемого степенной зависимостью до диффузионной ползучести.  [c.190]

У циклически упрочняющихся материалов сопротивление упругопласти-ческому деформированию возрастает с ростом числа нагружений, а у циклически разупрочняющихся— уменьшается. Однако циклическая стабильность, упрочнение или разупрочнение скорее являются этапами деформирования, а не характеристиками материала в целом. На характер процесса цикличе Ь ского деформирования существенное влияние оказывают состояние материала, скорость деформирования, температура, форма цикла изменения напряжений и другие факторы. Для установления законов изменения напряжений и де( юрмаций при циклическом упругопластическом нагружении необходимо знать зависимость между напряжениями и деформациями (т. е. уравнения состояния материала после каждого цикла нагружения). Диаграммы циклического деформирования, приведенные в работах Мэнсона [262,263] и Орована [278], позволяют определить только предельные изменения напряженного состояния при циклическом упру-гопласгическом деформировании. Зависимости между напряжениями и деформациями, предложенные в работах Г. Мазинга [266], Р. Булли [290] и др., пока не могут быть распространены на все материалы и различные условия нагружения.  [c.237]


Смотреть страницы где упоминается термин Влияние температуры и скорости деформации на процесс деформирования : [c.139]    [c.97]    [c.44]    [c.61]    [c.40]    [c.124]   
Смотреть главы в:

Теория обработки металлов давлением Издание 3  -> Влияние температуры и скорости деформации на процесс деформирования



ПОИСК



Влияние N-процессов

Влияние Влияние температуры

Влияние деформации

Влияние скорости

Влияние температуры деформации

Влияние температуры и скорости деформации

Деформации скорость

Деформация Влияние скорости деформирования

Деформирование и деформация

Процесс деформирования

Скорость деформации (деформирования

Скорость деформирования

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте