Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет соединений и узлов

КОНСТРУИРОВАНИЕ И РАСЧЕТ СОЕДИНЕНИЙ И УЗЛОВ КАРКАСА  [c.194]

Расчет соединений и узлов.  [c.187]

Нагрузки на каждый шпиндель и суммарные рассчитывают с учетом их изменения во времени. При неавтоматизированном проектировании переменность нагрузок обычно не учитывают из-за большой трудоемкости расчетов, что приводит к завышению крутящего момента приводного электродвигателя и увеличению, массы валов и шпинделей из-за больших коэффициентов запаса прочности валов и шпинделей. Проверка совместимости узлов и деталей включает проверку отсутствия касания валов, шпинделей и корпусных деталей зубчатыми колесами, а также выполнение ограничений на межцентровые расстояния промежуточных валов и шпинделей. Силовой расчет деталей и узлов состоит из расчета частот вращения промежуточных валов расчета и контроля отклонения частот вращения промежуточных валов расчета и контроля отклонения частот вращения шпинделей, расчета мощности холостого и рабочего хода расчета на прочность, жесткость и долговечность шпинделей, промежуточных валов, их опор и шпоночных соединений расчета на изгиб и контактную прочность зубьев зубчатых колес.  [c.243]


Рациональное конструирование сварных соединений и узлов правильный расчет исключение конструктивных концентраторов напряжений избежание наложения швов в высоконапряженных зонах конструкции уменьшение жесткости схемы и размеров зон остаточных напряжений  [c.503]

Общие цели проектного расчета и решаемые им задачи анализ технологичности конструкции выбор рациональных параметров конструкции определение требований к точности отдельных деталей, соединений и узлов расчет допусков на технологические первичные ошибки. Характер и содержание расчета зависят от этапов проектирования.  [c.455]

Расчет посадок с зазором выполняется редко. Обычно назначение их производится с учетом опыта эксплуатации аналогичных соединений и узлов машин и механизмов.  [c.198]

После предварительного выбора размеров и разработки конструкции соединения и узла, в который оно входит, производится проверочный расчет по максимальным напряжениям смятия или на износостойкость по методике Белорусского политехнического института. При наличии аналогов с известными ресурсными показателями полезно сравнение величин трения в соединениях.  [c.177]

При расчете металлоконструкций и узлов их соединений необходимо учитывать горизонтальные инерционные нагрузки, соответствующие периоду неустановившегося движения манипулятора. Мосты мостовых манипуляторов можно рассчитать по методике, принятой в краностроении [5, 42, 51].  [c.199]

В книге рассматриваются конструктивные и технологические причины возникновения в сварных конструкциях концентрации напряжений, приводятся экспериментальные данные о напряженном состоянии различных соединений и узлов и о влиянии, которое оно оказывает на их прочность при различных условиях эксплуатации, даются практические рекомендации по снижению концентрации напряжений. Приводятся методы расчета, которые позволяют учитывать влияние концентрации напряжений в зависимости от конструктивных различий отдельных соединений и узлов, технологических особенностей их изготовления, а также от различий в условиях их работы под нагрузкой.  [c.2]

Разработка такого метода расчета представляет собой весьма сложную проблему, для решения которой прежде всего необходимо получить достаточно простую схему определения местных напряжений в сварных соединениях и узлах различной формы.  [c.3]

Неоправданное назначение операции термообработки может существенно увеличить трудоемкость изготовления изделия, в особенности в условиях серийного производства. С другой стороны, применение термообработки нередко заметно улучшает механические свойства и структуру сварных соединений, способствуя повышению их работоспособности. Решение об отказе от применения термообработки или, напротив, о необходимости ее использования определяется химическим составом металла, выбором метода сварки и присадочного металла, конструктивным оформлением соединений и узлов, требованиями к механическим свойствам, условиям эксплуатации и т. д. Это решение проектировщику приходится принимать еще на стадии проработки технического проекта при выборе величины допускаемого напряжения, необходимого для выполнения расчетов на прочность.  [c.29]


Пример решения задач на равновесие системы тел (см. 18) дает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней, соединенных на концах шарнирами. Если все стержни фермы лежат в одной плоскости, ферму называют плоской. Места соединения стержней фермы называют узлами. Все внешние нагрузки к ферме прикладываются только в узлах. При расчете фермы трением в узлах и весом стержней (по сравнению с внешними нагрузками) пренебрегают или распределяют веса стержней ио узлам. Тогда на каждый из стержней фермы будут действовать две силы, приложенные к его концам, которые при равновесии могут быть направлены только вдоль стержня. Следовательно, можно считать, что стержни фермы работают только на растяжение или на сжатие. Ограничимся рассмотрением жестких плоских ферм без лишних стержней, образованных из треугольников. В таких фер-мах число стержней k и число узлов п связаны соотношением  [c.61]

В этих двух томах рассмотрены одиннадцать основных вопросов 1) основы теории упругости анизотропного тела 2) критерии разрушения и анализ разрушения элементов из композиционных материалов 3) расчет ферм, балок, рам и тонкостенных элементов 4) расчет пластин 5) расчет оболочек 6) распространение волн и удар 7) анализ конструкций из композиционных материа-лов методом конечных элементов 8) вероятностный расчет и на-дежность 9) экспериментальные характеристики композиционных материалов 10) анализ напряжений в окрестностях концентраторов напряжений, кромок и узлов соединений 11) проектирование элементов конструкций из композиционных материалов.  [c.9]

Торцовую диафрагму рассчитывают как отдельно стоящую плоскую конструкцию с учетом и без учета изгиба верхнего пояса. Оба расчета дали результаты, качественно согласующиеся с экспериментальными. В первом случае результаты эксперимента и расчета близки (рис. 2.79), во втором случае (шарнирное соединение в узлах) усилия в элементах фермы значительно больше экспериментальных (в верхнем поясе больше на 26%, в нижнем поясе и элементах решетки на 12—13%). Такой расчет, очевидно, может быть рекомендован для предварительного подбора или для контроля сечении бетона и армирования элементов диафрагм.  [c.160]

Корпусные конструкции энергетических установок, помимо разнообразия составляющих их элементов и узлов, требующих совместного рассмотрения при расчете напряженного состояния, включают, как показано в гл. 3, большое разнообразие условий их взаимодействия, особенно в узлах разъема фланцевых соединений. Некоторые из этих условий могут быть определены численными методами теории упругости (упругие контактные податливости фланцев) или экспериментально (податливости резьбовых соединений или пластических прокладок) для других условий, существенно влияющих на напряженное состояние всей конструкции, могут быть заданы лишь возможные пределы их изменения (допуски на  [c.127]

Статическое трение асбофрикционных материалов. При расчете и анализе работы фрикционных устройств в режиме статического трения (тормоза подъемнотранспортных машин, муфты сцепления, неподвижные фрикционные соединения и др.), при анализе механических релаксационных колебаний, возникающих в узлах трения, и во многих других случаях наряду с кинетическими фрикционными характеристиками необходимо знать статические характеристики, в частности коэффициент статического трения или трения покоя.  [c.157]

Расчет зазоров и натягов следует производить для всех типов, соединений в особенности для посадок с натягом, подшипников жидкостного трения, тепловых посадок. Нередко посадки выбирают ио аналогии с ранее спроектированными изделиями и узлами, сходными по условиям работы.  [c.580]

Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]


Изложены основы теории, расчета и принципы конструирования деталей и узлов машин общего назначения разъемных и неразъемных соединений, передач зацеплением и трением, подшипников скольжения и качения, валов и муфт приводов. Во втором издании (1-е — в 2002 г.) внесены исправления и переработана глава 11.  [c.4]

В учебных курсах деталей машин изучают также принцип действия, конструкцию и элементы расчетов не только отдельных деталей, но и узлов машин, представляющих собой соединение — разъемное или неразъемное — нескольких деталей. Такими узлами, которые широко применяются в различных машинах, являются шариковые и роликовые подшипники, редукторы, коробки скоростей и др.  [c.326]

Недостаточная жесткость зажимного приспособления является результатом неправильного расчета при конструировании или плохого качества изготовления и сборки. Здесь, как и в станке, необходима плотность соединения всех деталей и узлов при сборке и достаточная прочность силовых элементов.  [c.210]

В книге рассмотрены основы расчетов и конструирования деталей и узлов машин общего назначения соединений, механических передач вращательного движения, осей, валов, подшипников, муфт и пружин. Книга может быть полезна для инженерно-технических работников.  [c.2]

В курсе Детали машин изучают детали и узлы машин общего назначения, т. е. такие, которые встречаются во всех машинах или во многих из них. Соответственно данный курс содержит сведения о расчете и конструировании 1) соединений — заклепочных, сварных, с гарантированным натягом, резьбовых, клиновых, штифтовых, шпоночных, зубчатых (шлицевых) и профильных (бесшпоночных) 2) передач — фрикционных, ременных, зубчатых, червячных, цепных, винт-гайка 3) осей, валов, подшипников скольжения и качения, муфт и пружин.  [c.9]

В книге рассмотрены расчеты, конструкция и технология деталей и узлов общего назначения разъемных и неразъемных соединений, передач трением и зацеплением, валов и осей, подшипников скольжения и качения, муфт и пружин. Книга является учебником для вузов и соответствует программе курса детален машин для студентов машиностроительных и механических специальностей.  [c.2]

Справочник содержит сведения, необходимые при проектировании различных видов станочных приспособлений массового и серийного производства. В нем рассмотрены способы и средства базирования обрабатываемых деталей, требования и расчет основных элементов пневматического, гидравлического, электрического и других видов механизированного привода. Приведены расчеты прочности узлов и деталей, наиболее часто встречающихся при проектировании станочных приспособлений (зубчатых и ременных передач, резьбовых, сварных, заклепочных соединений, валов, осей и др.), расчет сил зажима при различных видах обработки, а также графики, номограммы и таблицы по расчету деталей и узлов приспособлений. Даны рекомендации по выбору материалов и термообработке различных деталей станочных приспособлений, по вопросам общей компоновки приспособлений, многошпиндельных головок и координат осей роликов и шариков в зажимных приспособлениях для центрирования по боковой поверхности ауба и другие расчеты, необходимые при проектировании приспособлений.  [c.392]

Трубопроводы служат каналами, по которым энергия от насосов поступает к гидродвигателям. В зависимости от условий работы применяют жесткие и гибкие трубопроводы. Чаще всего в качестве трубопроводов гидроприводов применяют круглые стальные бесшовные трубы и иногда трубы из алюминиевых сплавов и чугуна. Гидравлический расчет трубопроводов производится по формулам гидравлики применительно к течению вязкой жидкости, Соединения труб и присоединение их к элементам и узлам гидроприводов должны быть прочными и гер-. метичными. При соединении стальных труб применяют сварку, фланцевые соединения. Соединение труб небольшого диаметра производится накидными гайками с развальцовкой соединяемых концов труб для высоких и сверхвысоких давлений используют ниппельное соединение.  [c.364]

Развитие теории еопротивления уеталоети в наетоящее время идет в оеновном по пути накопления и еистематиза-ции экспериментальных данных, на основании которых и проводится расчет на прочность при переменных напряжениях. Усталостные испытания связаны с использованием сложных машин и образцов, а получение одной экспериментальной зависимости часто требует месяцы, а иногда и годы. Хотя в течение многих десятилетий ведется все время прогрессивно развивающаяся экспериментальная и теоретическая работа по исследованию усталости, в настоящее время, на основании имеющихся опытных данных, мы может рассчитывать на сопротивление усталости сравнительно узкий круг, правда, часто встречающихся, деталей систем (валы, вращающиеся оси, зубчатые колеса, некоторые паяные и резьбовые соединения и ряд других). Для вновь создаваемых узлов и систем с целью выяснения их сопротивления усталости приходится прибегать к натурным усталостным испытаниям.  [c.332]

В седьмом томе последовательно рассмотрены теория упругости анизотропного тела, критерии прочности композиционных материалов, метод расчета стержней, пластин, оболочек, элементов конструкций и узлов их соединений, вопросы распространения волк в ковструкциях из композиционных материалов. Приведен обширный экспериментальный материал.  [c.4]

Упругопластический расчет по предлагаемому методу выполняется для осесимметричных корпусных конструкций и узлов энергетического оборудования, сосудов под давлением, фланцевых соединений, патрубков и других деталей, рассматриваемых как многократно статически неопределимые составные системы из элементов оболочек, пластин, кольцевых деталей и стержней. Различные типовые особенности этих конструкций, такие, как жесткие и упругие закрепления и опоры, шарнирные соединения, разъемные соединения с разнообразными условиями контактирования соединяемых деталей и узлов, разветвления меридиана и тд., рассматриваются как разрьтные сопряжения (см. 1 гл. 3). В каждом приближении упругопластического расчета вьшолняется упругий расчет по следующим рекуррентным матричным формулам метода начальных параметров [2] линейным соотношениям между перемещениями и усилиями на краях рассматриваемых элементов  [c.206]


Расчет фланцевого соединения с прокладкой ведется на рабочую нагрузку и усилие деформации прокладки, а при расчете соединения с упругим кольцом учитывается только рабочая нагрузка. Это прив0)1ит к значительному уменьшению габаритов и веса узлов, а также к упрощению операций сборки и разборки.  [c.182]

В прочностных расчетах стержневых сис-Тем МКЭ применяют обычно в форме метода перемещений. Элементом системы является стержень. Для простоты изложения рассмотрен случай, когда система состоит из прямых стержней, соединенных в жестких узлах при узловой нагрузке (рис. 8.14.1). Выбрана единая для всей конструкции глобальная система координат. Нагрузка задана в каждом к-и узле йектором шестого порддка (проекциями сип и моментов на оси глобальной системы)  [c.104]

Характеристики сопротивления усталости и трещиностойкости определяют расчетом и экспериментально. Для этого на этапе проектирования испытывают образцы материалов и соединений, опытные панели и узлы. В результате испытаний выбирают материалы, полуфабрикаты, конструктивные формы и технологические процессы, обеспечивающие высо-  [c.409]

В работе (5] была предложена матричная форма метода начальных параметров для расчета упругих перемещений, усилий и напряжений в различных корпусах и сосудах, рассматриваемых как многократно статически неопределимые системы из элементов оболочек, пластин, кольцевых деталей, стержней, и были показаны преимущества этого метода ири расчете на ЭВМ. В работе [6] метод был развит применительно к различным типовым особенностям взаимодействия элементов и узлов таких конструкций, которые могут быть представлены как разрывные особенности или оазоывные сопряжения элементов. Примерами таких типовых особенностей являются контактные сопряжения фланцевых разъемных соединений, для которых неизвестны взаимные повороты и контактные моменты, зависящие от местной податливости зон контакта, величины радиальных проскальзываний и поперечных усилий, в свою очередь зависящих от сил трения в этих зонах и упругости шпилек фланцевых соединений. Разрывные особенности не только увеличивают число неизвестных величин, но и существенно усложняют применение для рассматриваемых статически неопределимых задач известных методов строительной механики, включая матричные, наиболее компактные и удобные при использовании ЭВМ.  [c.76]

Корпусные конструкции энергетических установок помимо разнообразия составляющих их элементов и узлов [1, 2, 4], требующих совместного рассмотрения при расчете напряженного состояния, включают, как показано выше, большое разнообразие условий их взаимодействия, особенно в узлах разъема фланцевых соединений. Некоторые из этих условий могут быть определены численными методами теории упругости (упругие контактные податливости фланцев) или экспериментально (податливости резьбовых соединений или пластических прокладок) для других условий, существенно влияющих на напряженное состояние всей конструкции, могут быть заданы лишь возмоягные пределы их изменения (допуски на зазоры в соединениях крышки п корпуса реактора, коэффициенты трения). Это требует при проектировании, расчете напряжений и оценке прочности корпусных конструкций рассмотрения большого числа вариантов взаимодействия с целью учета наименее благоприятного возможного их сочетания либо задания ограничений на условия изготовления и эксплуатации, исключающих неблагоприятный вариант напряженного состояния. Учесть указанные особенности разъемных соединений при использовании традиционных методов расчета многократно статически неопределимых конструкций, например методом сил [1, 4], из-за большой трудоемкости не представляется возможным поэтому рекомендуемые в настоящее время расчетные схемы [4] рассматривают отдельные узлы корпусных конструкций без учета указанных условий взаимодействия, пренебрегая силами трения, ограничениями по взаимным перемещениям в посадочных соединениях крышки и корпуса, контактными податливостями фланцев. В частности, изменение усилия затяга шпилек фланцевых соединений в различных режимах определяется без полного учета деформаций всей конструкции, что не позволяет обоснованно выбрать величину предварительного затяга шпилек.  [c.88]

Проектирование и расчет фургонов полуприцепов удачно изложены Боуджем, представившим работу такой конструкции следующим образом [2]. Конструкция пола (планки и поперечины) передает нагрузку боковым панелям. Боковые панели действуют как балки-стенки, воспринимая усилия, действующие снизу, со стороны узлов соединений, и нагрузку, действующую сверху, со стороны крыши. Крутящий момент воспринимают кузов в целом, который работает как труба, и в первую очередь концевые рамы. Горизонтальные силы вначале воспринимает основание конструкции. Изгибающий момент, возникающий в горизонтальной плоскости при поворачивании седельного тягача, воспринимают конструкция пола и силовые элементы крыши. На рис. 7.25 показаны элементы этой конструкции.  [c.184]

Здесь же проводятся расчеты, подтверждаюш,ие прочность и долговечность окончательно принятых конструкций валов, шпоночных соединений и соединений с натягом, стяжных винтов подшипниковых узлов, а также проверочный расчет теплового режима червячного редуктора.  [c.144]

Расчет сварных соединений в узлах. Все элементы фермы по данному примеру соединяют в узлах без фасонок фигуркой вырезкой концов труб стержней решетки и примыканий их впритык к поясам. Контуры примыкания труб обваривают угловыми швами.  [c.270]


Смотреть страницы где упоминается термин Расчет соединений и узлов : [c.63]    [c.136]    [c.128]    [c.253]    [c.164]    [c.2]    [c.2]    [c.8]    [c.63]    [c.2]   
Смотреть главы в:

Конструкции и механический расчет линий электропередачи  -> Расчет соединений и узлов



ПОИСК



Глава ш е ста я. Конструирование и расчет соединений и узлов каркаса

КОНСТРУКЦИИ Н РАСЧЕТ ДЕТАЛЕЙ И УЗЛОВ Соединения деталей механизмов и приборов Неразъемные соединения Сварные соединения

Расчет узлов

Соединения Расчет

Узлы соединения



© 2025 Mash-xxl.info Реклама на сайте