Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение устойчивости цилиндрической оболочки

Отметим еще, что классические уравнения устойчивости цилиндрической оболочки получаются из системы (6.4.9) путем вычеркивания в матрице дифференциальных операторов Л двух последних строк и столбцов. Соответствующая система трех дифференциальных уравнений относительно трех искомых функций и , f/j, f/j интегрируется при краевых условиях (6.4.6), из которых исключаются условия на функции, связанные с учетом поперечных сдвигов.  [c.187]


В гл. 5 получены разрешающее дифференциальное уравнение устойчивости слоистой цилиндрической оболочки относительно прогиба выпучивания с произвольным строением пакета по толщине и расчетные формулы для определения критических усилий при различных видах нагружения, в частности, в оболочках, изготовленных прямой, однозаходной, перекрестной и изотропной намотками. Сформулирована задача поиска оптимальных параметров неравномерно нагретых по толщине многослойных цилиндрических оболочек. Для случая, когда активным является ограничение по устойчивости, оценено влияние схемы армирования на критические параметры нагрузки и волнообразования. Эти исследования расширяют представление о роли проектных параметров оболочечных конструкций, оцениваемых по моделям В. И. Королева и С. А. Амбарцумяна.  [c.8]

Рассмотрены задачи выбора оптимальной намотки тонкостенных цилиндрических оболочек, теряющих устойчивость при кручении, при нормальном равномерно распределенном давлении, при осевом сжатии, при совместном действии осевого сжатия и давления и при совместном действии кручения и внешнего давления. Получены расчетные формулы для определения критических усилий в оболочках, изготовленных различными видами намотки, исходя из разрешающего дифференциального уравнения устойчивости слоистой цилиндрической оболочки для общего случая анизотропии материала, когда его оси не совпадают с главными линиями кривизны оболочки. Изучены виды намотки прямая, косая, перекрестная, изотропная. Проведено сравнение с результатами, полученными по приближенным формулам.  [c.197]

Итак, задача устойчивости цилиндрической оболочки сформулирована как краевая задача на собственные значения для системы дифференциальных уравнений с частными производными (6.4.1) — (6.4.5) при краевых условиях (6.4.6) и условии 2л -периодичности решения по угловой координате. Наименьшее из собственных значений этой задачи определяет критическую интенсивность внешней нагрузки, а соответствующая ему собственная вектор-функция — форму потери устойчивости. Параметрические члены уравнений нейтрального равновесия (6.4.1) в общем случае переменны и определяются путем интегрирования линейной системы уравнений осесимметричного изгиба (6.2.14) при краевых условиях (6.2.9). В выражениях для элементов матриц А, В коэффициентов этой системы (см. параграф 6.2) следует выполнить упрощения, соответствующие принятым допущениям о тонкостенности и пологости оболочки, а вектор-столбец / для рассматриваемого ниже случая нагружения оболочки равномерно распределенным внешним давлением интенсивности Р следует взять в виде  [c.185]


Получим дифференциальное уравнение устойчивости слоистой цилиндрической оболочки, изготовленной из ортотропного материала косой однозаходной намоткой, т. е. для общего случая анизотропии, когда главные оси анизотропии не совпадают с осями координат. Очевидно, уравнение устойчивости для оболочки, по-лз енной прямой намоткой, будет частным случаем при  [c.220]

Умножая уравнение (738) на оператор у можно получить следующее дифференциальное уравнение устойчивости слоистой цилиндрической оболочки, изготовленной из ортотропного материала косой однозаходной намоткой  [c.223]

В гл. 2 представлено обобщение системы дифференциальных уравнений смешанного вида типа Кармана на случай ортотропной конической неравномерно нагретой по толщине оболочки с учетом зависимости характеристик упругости материала от температуры. С помощью этих уравнений исследована устойчивость незаполненных конических и цилиндрических оболочек при различных видах нагружения.  [c.8]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]


В ходе расчетов, выполненных [17—19, 21, 23, 24, 30] для слоистых оболочек вращения важных частных классов (цилиндрических, конических и др.) с использованием разработанных в настоящей монографии неклассических уравнений, выявлено, что спектральный радиус матрицы Якоби правой части системы дифференциальных уравнений (7.2.21), (7.2.28) и спектральный радиус матрицы коэффициентов первоначальной системы уравнений изгиба — величины одного порядка. Спектр матрицы Якоби характеризуется большим разбросом и, что существенно, весь лежит в левой комплексной полуплоскости. Такие системы дифференциальных уравнений относятся к классу жестких (в смысле определения [131, 256, 283]). Их устойчивое численное решение классическими явными методами Рунге — Кутта, Адамса и др. [41] возможно лишь при существенном ограничении на шаг интегрирования h  [c.203]

Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

Собственные частоты эксцентрично подкрепленных цилиндрических оболочек и пластин будем находить в предположении отсутствия гистерезиса конструкции и материала. Добавляя к внутренним силовым факторам массовые (инерционные) силы, которые условно могут быть приняты за внешние нагрузки, исследуемые системы можно рассматривать в статическом равновесии. В этом случае порядок вывода дифференциальных уравнений колебаний сохраняется таким же, как порядок вывода уравнений устойчивости.  [c.32]

Изотропная цилиндрическая оболочка. Классическая теория устойчивости изотропных цилиндрических оболочек исходит нз следующей системы двух линейных дифференциальных уравнений  [c.308]

Рассмотренные две основные задачи устойчивости цилиндрической оболочки в классической постановке допускают замкнутое аналитическое решение. Подавляюшее большинство других задач устойчивости оболочек удается решить только с помощью различных приближенных методов, В настоящее время разработаны эффективные численные методы решения систем, шнейных обьпшовенных дифференциальных уравнений. Поэтому все задачи устойчивости упругих оболочек вращения при осесимметричном начальном состоя-  [c.213]

Ллойд Гамильтон Доннелл — известный в США и у нас в стране специалист по теории оболочек. Он завершил в 1930 г. в Мичиганском университете докторскую диссертацию, посвященную распространению продольных, волн и удару, под руководством С. П. Тимошенко. В 1933 г. он решил задачу об устойчивости тонкой упругой круговой цилиндрической оболочки крнечной длины при кручении ее концевыми парами. Эта работа связала имя Л. Г. Доннелла с уравнениями линейной теории пологих оболочек. Л. Г. Доннелл записал для нелинейной теории пологих оболочек уравнение совместности деформации, являющееся обобщением известного уравнения Максвелла. Специальная форма дифференциальных уравнений устойчивости круговых цилиндрических оболочек в перемещениях носит название уравнений Доннелла, а уравнения устойчивости пологих оболочек общего вида именуются ныне как уравнения Доннелла — Муштари. Работы Л. Г. Доннелла по оценке влияния несовершенств формы срединной поверхности оболочек на критическую нагрузку в рамках нелинейной теории не прошли незамеченными для специалистов.  [c.5]

Особое место в теоретических исследованиях занимают работы. выполненные В. А. Баженовым, А. И. Оглоблей, Е. А Гоцуляком, по изучению неосесимметричных форм потери устойчивости при одностороннем контакте о упругим основанием колец, цилиндрических оболочек и пологих панелей, нагруженных давлением 118—26, 76—79]. Здесь учтены линейное (кольцо, цилиндрические оболочки) и нелинейное (панели) докритические состояния. Дифференциальные уравнения устойчивости заменяются системой однородных алгебраических уравнений. Методом продолжения решения по  [c.19]

В работе решается задача устойчивости составной оболочки, состоящей из цилиндрического и конического участков, находящейся под действием равномерного внешнего давления. Используются приближенные дифференциальные уравнения для цилиндрической и конической оболочек. Решение проведено с помощью метода сеток. Результаты решения сравниваются с данными эксперимента. Отношение теоретического значения критического давления к экспериментальному для всех случаев близко к 1/0,7. Отсюда следует, что теоретическую величину критического давления следует умножить на 0,7. Табл. 5, ил. 6, список лит. 4 назв.  [c.331]

В шестой главе рассматриваются слоистые цилиндрические оболочки. Замкнутая система дифференциальных уравнений, описывающая в линейном приближении процесс деформирования слоистой упругой ортотропной композитной цилиндрической оболочки, получена из общей системы и использована при исследовании осесимметричного изгиба оболочки, нагруженной равномерно распределенным внутренним давлением. Выполнен параметрический анализ влияния поперечных сдвигов на интегральные (прогибы, усилия, моменты) и локальные (нагрузки начального разрушения) характеристики напряженно-деформирован-ного состояния. На примере этой задачи исследована зависимость решения от функционального параметра /(z) и показано, что в большинстве практически важных случаев этот параметр можно принять соответствующим квадратичной зависимости сдвиговых поперечных напряжений от нормальной координаты. В параграфе 6.4 дано решение задачи об устойчивости цилиндрической многослойной оболочки, нагруженной внешним давлением. Эта задача рассмотрена как на основе разработанных в настоящей монографии уравнений, так и на основе других вариантов уравнений устойчивости, приведенных в третьей ее главе. Выполнен параметрический анализ полученных решений, что позволило выявить и оценить влияние поперечных сдвиговых деформаций, обжатия нормали, кинематической неоднородности, моментности основного равновесного состояния на критические параметры устойчивости.  [c.14]


В. Флюгге ) рассмотрел задачу устойчивости тонких цилиндрических труб в условиях чистого изгиба. Он показал, что критическое напряжение сжатия в этом случае приблизительно на 30% выше, чем для симметрично выпученной цилиндрической оболочки, подвергнутой осевому сжатию. По запросам авиационной промышленности сравнительным теоретическим и лабораторным исследованиям были подвергнуты разнообразные методы усиления цилиндрических оболочек. Если цилиндрическая оболочка усилена равноотстоящими продольными и кольцевыми ребрами, задача сводится к определению условий потери устойчивости анизотропной оболочки. Соответствующие дифференциальные уравнения были установлены В. Флюгге), некоторые же вычисления выполнил Джи-Джюэн-Дшу ).  [c.498]

С математической точки зрения, изучение явления параметрического резонанса сводится к исследованию дифференциальных уравнений с периодическими коэффициентами. В частности, для цилиндрической оболочки при малых колебаниях последней оно состоит в исследовании решений уравнения Матье — Хилла при заданном соотношении между возмущающей частотой О и частотой свободных колебаний со. Если решение уравнения Матье — Хилла при заданном отношении со/О окажется неограниченно возрастающим во времени, то это значит, что мы имеем дело с параметрическим резонансом. В том случае, когда решение уравнения остается ограниченным с возрастанием времени, параметрического резонанса не наблюдается и оболочка будет устойчивой.  [c.385]


Смотреть страницы где упоминается термин Дифференциальное уравнение устойчивости цилиндрической оболочки : [c.223]    [c.94]    [c.61]   
Смотреть главы в:

Слоистые анизотропные пластинки и оболочки из армированных пластмасс  -> Дифференциальное уравнение устойчивости цилиндрической оболочки



ПОИСК



425 — Уравнения оболочек цилиндрических

Оболочка Устойчивость

Оболочка цилиндрическая

Оболочки уравнения

Уравнение устойчивости

Уравнения устойчивости оболочек

Устойчивость цилиндрических

Устойчивость цилиндрических - оболочек



© 2025 Mash-xxl.info Реклама на сайте