Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механика теоретическая (общая)

Механика теоретическая (общая) 11 Мещерского уравнение 357 Многоугольник векторный 27  [c.474]

Г. Как известно из теоретической механики, в общем случае все силы инерции звена ВС (рис. 12.1), совершающего плоскопараллельное движение и имеющего плоскость симметрии, параллельную плоскости движения, могут быть сведены к силе инерции Fa, приложенной в центре масс S звена, и к паре сил инерции, момент которой равен М .  [c.238]


Поясним сказанное следующим примером. Пусть положение всех частиц тела относительно каких-либо других тел не изменяется со временем. Про такое тело говорят, что оно находится в относительном покое по отношению к этим телам. Относительный покой, рассматриваемый в связи с силами, называют относительным равновесием, или, коротко, равновесием. Пусть к абсолютно твердому телу, находящемуся в покое, приложили две равные силы, действующие по одной прямой, но в противоположные стороны. Совершенно очевидно, что такие две силы не смогут нарушить равновесия абсолютно твердого тела. Этот закон мы принимаем как аксиому. Но если вместо абсолютно твердого тела мы подвергнем действию двух таких сил какое-либо реальное физическое тело, например, будем растягивать какую-нибудь пружину, то в зависимости от жесткости этой пружины и величины действующих сил мы получим более или менее значительную деформацию пружины или даже разрыв ее. Таким образом, отказавшись от понятия абсолютно твердого тела, мы не смогли бы установить общего закона о равновесии тела под действием двух сил. Установив же в теоретической механике этот общий закон на основании свойств абсолютно твердого тела, мы сможем в каждом отдельном случае применять его к реальным физическим телам, что составляет предмет других отраслей механики.  [c.9]

Теоретическая механика занимается общими закономерностями механических движений материальных тел и механических (силовых) взаимодействий между ними, а также взаимодействий тел с физическими (тяготения, электромагнитными) полями.  [c.7]

Уравнения движения неголономных систем обычно пишут в иной форме, пользуясь неопределенными множителями (см., например, Суслов, Теоретическая механика). Пусть общее уравнение механики приведено к виду (79)  [c.421]

Курс механики для физиков читается в университетах и пединститутах. Далеко не везде отказались от теоретической механики и перешли к классической механике, подразумевая под этим термином не просто изложение ньютоновской механики, а общую тенденцию курса как введения в теоретическую физику. Но переход к классической механике в этих учебных заведениях неизбежен для физиков механика — все равно лишь первый раздел теоретической физики.  [c.6]

Механика машин является одним из многочисленных технических приложений механики теоретической. Отсюда происходит и прежнее ее название — прикладная механика. В ней рассматривается приложение общих принципов и законов теоретической механики к изучению движения особого класса механических систем, известных в технике под общим названием — машин, приводов и механизмов. С последним связано и современное название предмета — теория машин и механизмов. Машины, приводы и механизмы в современной промышленности играют чрезвычайно большую роль, а отрасль промышленности, занимающаяся созданием указанных систем, — машиностроение — является ведущей отраслью для тяжелой промышленности, представляющей основу народного хозяйства Советского Союза.  [c.4]


Сплочению и взаимопониманию членов коллектива кафедры способствовала работа над созданием учебника по курсу теоретической механики. Особенно тщательно обсуждался на кафедре (с участием преподавателей кафедры общественных наук) краткий исторический очерк развития механики и общее введение к курсу. Первое издание учебника вышло в свет в 1953 г., а второе — в 1958 г.  [c.227]

Наука об общих законах движения и равновесия материальных тел и о возникающих при этом взаимодействиях между телами называется теоретической ( или общей) механикой. Теоретическая механика представляет собой одну из научных основ современных технических дисциплин.  [c.11]

В теоретической механике (классической механике) изучают общие законы механического движения и связанные с ним механические взаимодействия материальных тел.  [c.4]

Способность деформироваться под действием внешних сил — основное свойство материалов всех реальных тел. Поэтому понятие о деформируемом твердом теле (в отличие от понятия абсолютно твердого тела , которым оперирует теоретическая механика) более обще и более точно отражает природу материалов реальных тел.  [c.7]

Аналитическая механика дает общие методы, с помощью которых можно составить дифференциальные уравнения движения, не вводя реакции идеальных связей. Методы аналитической механики оказались плодотворными не только в теоретических исследованиях, йо и в практических инженерных расчетах.  [c.400]

Как неоднократно отмечалось, важную роль в теоретической механике играют общие теоремы о сохранении и инвариантности различных величин. Большое значение имеет инвариант Пуанкаре — Картана.  [c.419]

Как известно из теоретической механики, в общем случае все силы инерции звена ВС (рис. 442), совершающего плоскопараллельное движение и имеющего плоскость симметрии, параллельную плоскости движения, могут быть сведены к силе инерции Р ,  [c.332]

Компоненты вихря. Если бы частица жидкости была твердой, т. е. не изменяла своей формы, то движение ее ничем не отличалось бы от движения твердого тела. Как известно из теоретической механики, в общем виде движение бесконечно малого твердого тела слагается из поступательного со скоростью о и вращательного вокруг Мгновенной оси с угловой скоростью ы. Проекции вектора угловой скорости твердого  [c.403]

В основу настоящей книги положен курс лекций по классической механике, читавшийся автором на физическом факультете Московского государственного педагогического института им. В. И. Ленина на протяжении последних 20 лет. Книга написана в полном соответствии с новой программой по курсу теоретической физики для физических специальностей педагогических институтов, утвержденной Министерством просвещения СССР в 1977 г., в которой механика рассматривается как первый и важнейший раздел единого курса теоретической физики. Поэтому в книге особое внимание уделено принципиальным вопросам классической механики — ее основным понятиям и законам принципам относительности и причинности законам сохранения и их связи с симметрией пространства-времени вариационным принципам механики и общим методам получения первых и вторых интегралов уравнений движения методам качественного исследования поведения механических систем и ее связи с другими разделами современной физики.  [c.3]

В теоретической механике исследуются общие законы движения материальных тел и устанавливаются общие приемы и методы для решения всех вопросов, относящихся к движению тел. Применение начал механики к решению специальных технических задач (как, например, к исследованию прочности сооружений, к изучению движения машин и т. д.) составляет содержание различных отделов механики прикладной.  [c.9]


В гл. 1 излагалась эволюция понятия о температуре в течение более чем двух тысяч лет от исходных примитивных представлений до обобщенных концепций современной термодинамики и статистической механики. В предлагаемой главе рассказывается, каким образом на основе этих теоретических представлений появились температурные эталоны и температурные шкалы. Прежде всего ознакомимся в общих чертах с событиями, позволившими установить области, в которых были заключены международные соглашения.  [c.37]

Кроме указанных двух способов, существует третий, наиболее общий способ, основанный на применении известных из теоретической механики уравнений Лагранжа второго рода, которые при отсутствии сил сопротивления и внешних возмущающих сил имеют вид  [c.554]

Общий метод расчета на динамическую нагрузку основан на известном из теоретической механики принципе Даламбера. Согласно этому принципу, всякое движущееся тело может рассматриваться как находящееся в состоянии мгновенного равновесия, если к действующим на него внешним силам добавить силу инерции, равную произведению массы тела на его ускорение и направленную в сторону, противоположную ускорению. Поэтому в тех случаях, когда известны силы инерции, без всяких ограничений можно применять метод сечений и для определения внутренних усилий использовать уравнения равновесия.  [c.287]

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих, понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.  [c.5]

Сила взаимодействия звеньев, образующих низшую пару, представляет собой равнодействующую элементарных сил, распределенных но поверхности соприкосновения звеньев. Как известно из теоретической механики, сила взаимодействия двух соприкасающихся тел при отсутствии трения направлена по общей нормали к их поверхности.  [c.181]

Из теоретической механики известно, что давление вращающегося тела на его опоры в общем случае складывается из двух составляющих статической, вызванной действием заданных сил (силы тяжести тела и др.), и динамической, обусловленной уско-  [c.211]

В гл. 5 был рассмотрен силовой расчет механизмов без учета трения в кинематических парах. Наличие трения изменяет величину и направление действующих сил. Согласно положениям теоретической механики при наличии трения скольжения сила взаимодействия двух соприкасающихся тел отклоняется от общей нормали к их поверхностям на угол трения. Тангенс угла трения равен коэффициенту трения скольжения  [c.230]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Расчеты деталей машин базируются на знании основ сопротивления материалов — науки о прочности и жесткости механических конструкций и методах их расчета. Безошибочность же всех действий в современной технической практике определяется знанием основных положений теоретической механики, в которой изучаются законы движения механических систем и общие свойства этих движений.  [c.5]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]


В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]

Механику принято делить на теоретическую и прикладную. Обе они диалектически взаимосвязаны. В теоретической механике устанавливаются общие закономерности изучаемых объектов вне связи с их конкретными приложениями.  [c.4]

Статикой называется раздел теоретической механики, изучающий общие свойства сил и условия равновесия п0ер-дых тел, находящихся под действием приложенных к ним сил.  [c.25]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]

Развитие всех разделов современной техники указывает на все возрастающее значение механики. Изучение общих законов механического движения обогащает исследователей — инженеров и ученых—плодотворными могущественными методами, помогая раскрывать истинное содержание многообразных явлений природы и технической практики. Исследования, проведенные в последние годы в теории автоматического регулирования, теории гравитации, в задачах динамики полета управляемых ракет и космических кораблей, квантовой механике и теории относительности, неоспоримо выявляют более глубокое и широкое значение общих закономерностей механического движения для современного научно-технического прогресса. Несомненно, ошибаются те ученые, которые считают, что механика закончилась в своем развитии. Теоретическая механика является одной из наук о природе. Предмет исследования этой науки вечен и безграничен в своем объеме. Все исполнительные механизмы в орудиях труда и разнообразных машинах в подавляющем большинстве случаев создаются и действуют в строгом соответствии с законами механики. В этой науке есть подлинная романтика и математически строгий анализ, помогающие человечеству идти вперед к неслыханной производительности умственного и физического труда, преобразующего лицо нашей планеты. Межпланетные полеты пилотируемых космических кораблей будут реальностью в ближайшие 10—15 лет. Совершенствование орудий труда, проводимое на основе законов механики, позволяет уже в наши дни осуществлять изменения поверхности Земли, по масштабу не уступающие геологическим потрясениям.  [c.5]

В отличие от твердого тела, движение которого в теоретической механике в общем случае можно разложить на поступательное движение со скоростью ио произвольно вьгбракной точки (полюса) и на вращательное движение с угловой скоростью вокруг мгновенной оси, проходящей через эту точку, движение жидкого элемента в общем случае можно разложить на три движения. Каждый бесконечно малый элемент жидкости, кроме поступательного и вращательного движения, находится сн1е и в состоянии деформационного движеиия.  [c.109]

Поэтому можно к исследованию механизмов с различными функциональными назначениями применять общие методы, базирующиеся на основных принципах современной механики. В механике обычно рассматриваются статика, кинематика и динамика как абсолютно твердых, так и упругих тел. При исследовании машин и механизмов, как правило, мы можем считать жесткие тела, образующие механизм, абсолютно твердыми, так как перемещения, возникающие от упругих деформаций тел, малы по от Ю-[[leHHfO к перемещениям самих тел и их точек. Если мы рассматриваем механизмы как устройства, в состав которых входят только твердые тела, то для исследования кинематики и динамики механизмов можно пользоваться методами, излагаемыми в теоретической механике. Если же требуется изучить кинематику и динамику механизмов с учетом упругости звеньев, то Для этого, кроме методов теоретической механ.чки, мы должны еще применять методы, излагаемые в сопротивлении материалов, теории упругости и теории колебании. Если в состав механизма входят жидкие или газообразные тела, то необходимо привлекать к исследованию кинематики и динамики механизмов гидромеханику и аэромеханику.  [c.17]

Теория механизмов и машин является первой дисциплиной, вводящей студентов в круг общих и специальных дисциплин В ее задачу входит подготовка студентов к слушанию курсов деталей маишн, технологии машиностроения и курсов по расчету и конструированию отдельных видов машин в зависимости от специаль-игстн, по которой проходит подготовка студентов Вместе с курсами теоретической механики, сопротивления материалов и деталей машин теория механизмов и машин образует цикл предметов, обеспечивающих общеинженерную подготовку студентов.  [c.18]


Современное состояние механики многофазных сред характеризуется интенсивным развитием теоретических и экспериментальных исследований. Разработаны и математически описаны некоторые идеализированные модели движения таких сред. Возможные модели и соответственно совокупности описывающих зти модели уравнений довольно многочисленны. Очевидно, решения разных задач должны основываться на существенно различных допущениях и упрощающих предпосылках. Следовательно, оправданы стремления создать и математически описать модель, которая для определенного круга задач дает наилучшие результаты в ограниченных пределах при.менения. В рамках каждой модели наиболее простыми оказываются решения квази-одно.мерных задач. Следует отметить, что наиболее законченный ВР1Д и.меет и соответствующий раздел механики гомогенных сред (одномерное движение жидкости и газа). Естественно, что и в книге oy в одномерной трактовке представлены наиболее законченные решения. Вместе с тем широко развернуты теоретические исследования, имеющие целью получить наиболее общие уравнения, описывающие движение многофазной (многокомпонентной) среды полидисперсной структуры при наличии теплообмена, фазовых переходов, с учетом метастабильности и неравновесности процесса. Такие уравнения получены и для некоторых частных случаев решены.  [c.5]

Деятельность русских ученых, несмотря на крайне тяжелые условия развития науки в дореволюционной России, значительно способствовала развитию как общей теоретической механики, так и специальных механических дицинлин.  [c.6]


Смотреть страницы где упоминается термин Механика теоретическая (общая) : [c.6]    [c.42]    [c.124]    [c.13]    [c.5]    [c.12]    [c.24]    [c.13]    [c.17]   
Краткий курс теоретической механики (1995) -- [ c.409 ]

Краткий курс теоретической механики 1970 (1970) -- [ c.11 ]



ПОИСК



Механика общая

Механика теоретическая

Приложение. Упрощенный вывод общих теорем динамики системы материальных точек в абсолютном движении (для студентов, изучающих теоретическую механику по неполной программе)



© 2025 Mash-xxl.info Реклама на сайте