Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения равновесия элемента тела (статические уравнения)

Для равновесия деформируемого тела кроме уравнений статики должны удовлетворяться дополнительные уравнения совместности. деформаций элементов системы. Общее число уравнений статики и уравнений деформации должно быть равно числу искомых величин. Методику решения статически неопределенных задач рассмотрим на простых примерах.  [c.124]


Как уже указывалось, статически неопределимыми называются системы, силовые факторы в элементах которых только из уравнений равновесия твердого тела определить нельзя. В таких системах больше связей, чем необходимо для равновесия. Таким образом, некоторые связи оказываются в этом смысле как бы лишними, а усилия в них — лишними неизвестными. По числу лишних связей или лишних неизвестных усилий устанавливают степень статической неопределимости системы.  [c.417]

Конструкция называется статически неопределимой, если уравнений равновесия недостаточно для определения всех внутренних сил степень статической неопределимости равна разности между числом неизвестных внутренних сил н числом независимых уравнений равновесия конструкции. Согласно этой терминологии, конструкции можно в принципе рассматривать как многосвязные сплошные тела с бесконечной степенью статической неопределимости. Анализ подобных систем потребовал бы невероятно трудных вычислений. Однако экспериментальные данные н опыт проектирования показали справедливость упрощенного подхода к анализу конструкций, основанного на аппроксимации деформаций элементов конструкции системами с конечным числом степеней свободы. Иначе говоря, конструкции можно рассматривать как тела с конечной степенью статической неопределимости.  [c.289]

Для получения упомянутых уравнений в декартовой системе координат мысленно выделим в окрестности некоторой точки тела элементарный параллелепипед с размерами Ах, с1г/, dz. Первая группа уравнений выражает условия равновесия этого элемента среды, их называют статическими уравнениями.  [c.25]

Электрическая модель деформируемого тела в задачах теории упругости Элементарным объемам упругого тела соответствуют узлы электрической сетки из индуктивностей, емкостей и трансформаторов с диагональными элементами взаимоиндукции (сетка Г. Крона). Эквивалентная электрическая цепь удовлетворяет закону Ома и уравнениям Кирхгофа, что соответствует закону Гука и уравнениям равновесия и совместности Потенциалы, соответствующие деформациям и перемещениям, и токи, соответствующие напряжениям и усилиям Определение напряжений по заданным статическим или динамическим нагрузкам или перемещениям упругого тела, заданного в прямоугольных, полярных или цилиндрических коорди -натах, и для задач с осевой симметрией [35], [47], [67]  [c.256]


В теории упругости условия равновесия (статические условия задачи) выводятся по отношению к элементарному объему напряженного, а следовательно, уже деформированного тела. Отсюда все выводы теории упругости, касающиеся статической стороны задачи, можно считать абсолютно строгими только при допущении, что они относятся к координатам тела в его напряженно-деформированном состоянии. Что касается геометрических соотношений, которые выводятся в теории упругости, то все они, безусловно, относятся к координатам тела в его первоначальном недеформированном состоянии. При выводе этих геометрических соотношений принимают х, у, z — координаты материального элемента тела до деформации, х + г/ -f Uy, z -р- —его координаты после деформации и выводят зависимости между производными составляющих перемещения и , Uy и по первоначальным координатам точки, т. е. координатам ее в недеформированном состоянии тела. Таким образом, здесь известная неувязка заключается в том, что мы пользуемся основной системой уравнений, в которую входят,  [c.203]

Один из возможных подходов в этом направлении — использовать аналогию между высокотемпературной ползучестью материала и его деформированием в рамках модели идеально-пластической среды. Действительно, в задачах о предельном равновесии жестко-пластического тела требуется найти такие внешние нагрузки, при которых наступает обш,ая текучесть, т.е. тело получает возможность неограниченно пластически деформироваться, что соответствует исчерпанию его несуш,ей способности. Это означает, что в теле статически допустимые напряжения удовлетворяют уравнениям равновесия, граничным условиям и условию текучести Т (сг -) 0. Но почти так же можно сформулировать предельное состояние элемента конструкции с однородным напряженно-деформированным состоянием (НДС) в условиях высокотемпературной ползучести найти внеш-  [c.733]

Будем рассматривать жестко-пластическое тело, находящееся в предельном состоянии под действием внешних снл Я,. При этом обобщенные усилия в некоторых элементах не удовлетворяют условию текучести, в остальных же элементах это условие не нарушено. Соответствующие обобщенные скорости деформации будут а скорости точек приложения внешних сил — Нахождение перечисленных величин и составляет задачу теории пластичности при этом основная цель состоит в определении внешних сил, то есть несущей способности конструкции. Приближенное решение этой задачи можно всегда получить, если рассмотреть вместо истинного состояния некоторое статически возможное. Под статически возможным состоянием понимается такое состояние, когда выполнены уравнения равновесия и условие предельного состояния нигде не нарушено. Пусть Р — внешние силы, соответствующие этому статически возможному состоянию, Q — обобщенные усилия. По условию  [c.356]

Эти уравнения имеют несомненно фундаментальный характер, они связывают пространственные изменения напряжений в напряженном теле с ускорениями его элементов и являются исходным моментом при анализе распространения упругих волн в твердых телах. Если все части тела находятся в статическом равновесии, то  [c.194]

В главе V рассматривалось только равновесие тела или его элемента, в связи с чем зависимости этой главы имеют статическую природу. В главе VI анализировалась геометрическая или, иначе, кинематическая сторона вопроса деформации тела. Напряжения и деформации оставались между собою не связанными. Вместе с тем установление такой связи необходимо. Без этой связи системы уравнений (5.59) и (6.23) совместно использованы быть не могут и, таким образом, не может быть раскрыта механическая (в частности, статическая) неопределимость напряжений в сплошной среде. Установление зависимостей между напряжениями и деформациями необходимо и при получении формулы для потенциальной энергии деформации, а также при рассмотрении энергетических законов, которым подчиняется твердое деформируемое тело.  [c.493]


При этом приходится заботиться только об одном из оснований. Действительно, задание главного вектора и главного момента усилий, действующих на одно из оснований, определяет эти элементы и для другого, так как совокупность усилий, приложенных к обоим основаниям, должна быть статически эквивалентна нулю (т. е. удовлетворять условию равновесия абсолютно твердого тела). С другой стороны, всякое решение уравнений (1) всегда дает такое распределение напряжений на поверхности тела, которое статически эквивалентно нулю (см. конец 20).  [c.493]

Жестко-пластическая пластинка. В рассмотренных задачах о пластинке сделанное предположение о достижении предельного состояния во всех элементах оказывается, в противоположность случаю стержня, непротиворечивым. Это позволило избежать вопросов, связанных с геометрией упругих зон и их эволюцией. В таких задачах расчет по предельному состоянию упруго-пластического тела и определение пластического равновесия соответствующего жестко-пластического тела, естественно, совпадают. Однако рассмотренный пример является исключительным. Как правило, исчерпание несущей способности пластин более сложной формы происходит при наличии упругих зон. Кроме того, при отсутствии симметрии задача о пластинке даже в областях полной пластичности перестает быть статически определимой неизвестных моментов становится уже три, а уравнений для них остается по-прежнему два. Задача становится сложной, и использование модели жестко-пластического тела остается единственной практической возможностью оценить несущую способность.  [c.115]

Такой способ получения уравнений совместности деформаций наиболее естественно поясняет почему число атих уравнений равно шести, хотя на первый взгляд могло показаться, что для раскрытия статической неопределимости напряхсений к трем дифференциальным уравнениям равновесия элемента тела, содержащим вследствие закона парности касательных напряжений шесть неизвестных функций, достаточно присоединить три уравнения совместности деформаций.  [c.522]

Если же речь идет о твердом теле с закрепленной осью, то относительно реакций, возникающих в закрепленных точках оси, основные уравнения равновесия утверждают только то, что их результирующая сила и результирующий момент (относительно данной точки) должны быть равны и прямо противоположны результирующей силе и результирующему моменту активных сил, но не дают возможности определить эти реакции в отдельных закрепленных точках оси. Таким образом, основные уравнения равновесия приводят к заключению, что в статических условиях действие связей можно зайенить какой угодно из систем реакций (эквивалентных между собой), приложенных в закрепленных точках и имеющих результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил. Такое заключение, очевидно, неудовлетворительно, так как с физической точки, зрения бесспорно, что при равновесии реакции всегда определяются однозначно. Мы приходим, таким образом, к новому случаю статической неопределенности, который можно сравнить со случаем, уже встречавшимся в п, 10 гл. IX эта неопределенность происходит от того, что в принципах статики твердого тела не принимаются во внимание деформации, вызываемые силами. Это вполне допустимо в первом приближении, так как деформации вообще бывают незначительными, так что следствия, которые вытекают из этого упрощающего предположения, в достаточной степени соответствуют результатам опыта. Но нельзя претендовать на правильное и детальное отображение всех обстоятельств, связанных с рассматриваемым явлением, если мы намеренно пренебрегаем какими-либо существенными элементами этого явления. Поэтому мы не должны удивляться тому, что относительно реакций Ф мы в состоянии определить лишь свойства, относящиеся к ним в целом (т. е. то, что они имеют результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил F), и не можем указать их распределение в каждой точке. Это достигается в теории упругости, где как раз учитываются указанные выше деформации.  [c.114]

Строгая математическая модель деформаций дЛя всей конструкции ЭМУ, состоящей из п тел, в соответствии с теорией упругости представляет совокупность п систем известных уравнений физических (закон Гука) для составляющих напряжений в точке, геометрических (условия совместности) для деформаций в точке от перемещений и статических (уравнения равновесия) для связи напряжений с проекциями объемных сил совместно со взаимосвязанными геометрическими и граничными условиями [3]. При этом предполагается, что нагрузки на элементы конструкции заданы. Это существенно, например, при рассмотрении температурных полей и деформаций и их взаимовлияршя.  [c.120]

Обсуждение статической неопределимости закона распределения напряжений по поперечному сечению стержня показало, что при наличии в стержне отверстий, выточек и тому подобных нерегулярностей формы возникает резкая неравномерность распределения напряжений со значительными пиками вблизи указанных нерегулярностей. Это явление носит па. атптконцгнтрации напряжений. Оно обнаруживается не только при осевой, но и при всех других видах деформации стержня, а-также при деформации элементов любой формы (не только стержневых). С этим явлением приходится считаться как при конструировании элементов конструкций и деталей машин, так и при расчете их. Выявить распределение напряжений с учетом их концентрации можно двумя путями теоретическим и экспериментальным. Теоретический путь основан на применении теории сплошных сред (теории упругости, теории пластичности, теории ползучести — в зависимости от свойств материала), в которой вместо гипотез геометрического характера используются дифференциальные уравнения совместности деформаций, а равновесие соблюдается для любого бесконечного малого элемента тела, а не в интегральном (по поперечному сечению) смысле, как это делается в сопротивлении материалов.  [c.99]


Для статически возможных полей напряжений в элементе конструкции, удовлетворяющих уравнениям равновесия, граничным условиям и условию сохранения средней по объему тела мощности рассеяния И о = onst, внешние нагрузки будут меньше, чем для истинного НДС.  [c.736]

Так как при равновесии силы внутренних напряжений, действующих на каждый элемент объема твердого тела, должны йлть равными нулю, то уравнения статического равновесия деформированного тела записываются в виде  [c.109]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Смотреть страницы где упоминается термин Уравнения равновесия элемента тела (статические уравнения) : [c.200]    [c.31]    [c.74]    [c.522]    [c.73]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Уравнения равновесия элемента тела (статические уравнения)



ПОИСК



Статические уравнения

Уравнения Элементы

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения статического равновесия



© 2025 Mash-xxl.info Реклама на сайте