Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка, влияние на коррозионное

Существенное влияние на коррозионную устойчивость используемых в кораблестроении алюминиевых сплавов оказывает метод их сварки при изготовлении конструкций. Свойства алюминия определяют характерные особенности сварки алюминиевых сплавов по сравнению со сталью или другими металлами. Среди применяемых в кораблестроении методов сварки больше всего известна сварка з среде защитных газов (аргона, гелия или их смеси) с неплавкими (вольфрамовыми) или плавкими электродами. Аргонно-дуговую сварку с вольфрамовыми электродами осуществляют с помощью переменного тока.  [c.126]


Условия сварки оказывают значительное влияние на коррозионную стойкость сварного соединения. Это объясняется тем, что склонность к коррозии зависит от химического состава и структуры металла шва и околошовной зоны.  [c.42]

Пленка окислов хрома образуется в результате окислительного действия углекислого газа на хром. Кроме вредного влияния на коррозионную стойкость соединения, окислы загрязняют металл при многослойной сварке. Пленка с трудом удаляется с поверхности швов даже механическим путем. Чтобы избежать образования окисной пленки, на свариваемые кромки насыпают тонкий слой какого-либо флюса (применяющегося для автоматической сварки кислотостойких сталей под слоем флюса).  [c.126]

Растягивающие остаточные напряжения снижают прочность при переменных нагрузках. Пластические деформации, вызванные сваркой, и остаточные напряжения в ряде случаев оказывают отрицательное влияние на коррозионную стойкость сварных соединений.  [c.170]

Определенное влияние на коррозионную стойкость сварного соединения оказывает и способ сварки. Из условий эксплуатации для емкостной аппаратуры наиболее предпочтительны стыковые соединения. Нахлесточные и отбортованные соединения в корпусе емкости при-  [c.73]

Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва.  [c.28]

Нержавеющие и кислотостойкие стали в зависимости от химического состава могут сочетать различные свойства наряду с коррозионной стойкостью в атмосферных условиях они могут быть также окалино- или коррозионностойкими в различных агрессивных средах. Однако их коррозионная стойкость даже в одной какой-либо среде в значительной степени зависит от технологической обработки. Большое влияние на служебные свойства сталей оказывают термическая обработка, сварка, условия горячей пластической деформации, качество поверхности металла и другие факторы.  [c.9]


Исчерпывающих данных по влиянию механической обработки на длительную прочность в воздухе и в активных средах при действии статических сил нет. Можно предполагать, что механическая обработка должна оказывать влияние на хрупкое разрушение (статическую усталость) в воздухе некоторых видов закаленных высокопрочных сталей, а также сталей, предварительно наводороженных при сварке, травлении или гальванизации. Механическая обработка, активирующая поверхность при ее взаимодействии со средой, должна оказывать влияние на статическую усталость стали в некоторых активных средах. В этом случае уже достаточно времени для развития коррозионных или диффузионных процессов, зависящих от состояния поверхности металла, в силу чего состояние поверхности является решающим при длительной прочности, даже при равномерном распределении напряжения по сечению (одноосное растяжение).  [c.142]

На коррозионную стойкость и механическую прочность шва большое влияние оказывает режим сварки. Рекомендуется производи ь сварку короткой дугой длиной 2—3 мм. При сварке длинней дугой и при большой силе тока наблюдается значительное выгорание хрома и титана, входящих в состав сплава, что существенно понижает его коррозионную стойкость.  [c.170]

Механизм коррозионного растрескивания, несмотря на большое число опубликованных отдельных исследований и монографий [22—28], до конца еще не ясен нет единого подхода к коррозионному растрескиванию различных сплавов. Однако можно считать, что основные причины этого процесса выявлены. При определении склонности сплава к коррозионному растрескиванию необходимо выяснить влияние на нее величины напряжений, режимов термической обрабо гки сплавов и продолжительности технологических операций, а также влияние сварки на склонность сплава к коррозионному растрескиванию в зоне плавления или на некотором расстоянии (2—15 мм) от нее. Для испытаний на коррозионное растрескивание необходимо выбирать такие среды, в которых избирательная коррозия протекала бы со. скоростью, значительно большей, чем скорость общей коррозии, причем коррозионная среда должна отражать условия эксплуатации. В табл. 9 приведены составы растворов для определения склонности сплавов к коррозионному растрескиванию.  [c.64]

Эти условия определяются правильным выбором сварочных присадочных материалов, конструкции шва, доли участия в формировании шва основного и присадочного материалов, методов и режимов сварки. Изменение технологии сварки плавлением относительно мало влияет на коррозионные свойства термически стабильных мате риалов, но может оказать существенное влияние на свой-  [c.508]

Химический состав основного и присадочного металла оказывает существенное влияние на его механические, коррозионные, технологические сварочные свойства. Поэтому, разрабатывая новую технологию сварки, проверяя правильность применяемых материалов, проводя исследование причин появления разного рода дефектов, выполняют химический анализ металла различных участков сварного соединения. Обычно химическому анализу подвергают основной металл, электроды, присадочную проволоку и наплавленный металл.  [c.177]

Высоколегированные стали и сплавы составляют значительную группу конструкционных материалов. К числу основных трудностей, которые возникают при сварке указанных материалов, относится обеспечение стойкости металла шва и околошовной зоны против образования трещин, коррозионной стойкости сварных соединений, получение и сохранение в процессе эксплуатации требуемых свойств сварного соединения, получение плотных швов. При сварке высоколегированных сталей могут возникать горячие и холодные трещины в шве и околошовной зоне. С кристаллизационными трещинами борются путем создания в металле шва двухфазной структуры, ограничения в нем содержания вредных примесей и легирования вольфрамом, молибденом и марганцем, применения фтористо-кальциевых электродных покрытий и фторидных сварочных флюсов, использования различных технологических приемов. Присутствие бора может привести к образованию холодных трещин в швах и околошовной зоне. Предотвращение их появления достигается предварительным и сопутствующим подогревом сварного соединения свыше 250 — 300 °С. С помощью технологических приемов можно также предотвратить кристаллизационные трещины. В ряде случаев это достигается увеличением коэффициента формы шва, увеличением зазора до 1,5 — 2 мм при сварке тавровых соединений. Предварительный и сопутствующий подогрев не оказывает заметного влияния на стойкость против образования кристаллизационных трещин. Большое влияние оказывает режим сварки. Применение электродной проволоки диаметром 1,2 — 2 мм на умеренных режимах при минимально возможных значениях погонной энергии создает условия для предотвращения появления трещин. Предпочтение следует отдавать сварочным материалам повышенной чистоты. При сварке аустенитных сталей проплавление основного металла должно быть минимальным. Горячие трещины образуются  [c.110]


На основании сделанных измерений для всех трех образцов строят и сравнивают профилограммы и пишут выводы о коррозионной стойкости исследованных образцов, о влиянии химического состава металла и электрода для сварки на коррозионную стойкость сварного соединения.  [c.170]

Режимы сварки не оказывают резкого влияния на механические свойства аустенитных сталей, однако увеличение размеров сварочной ванны нежелательно, так как в этом случае снижается коррозионная стойкость соединений в связи с появлением четко выраженной ликвационной зоны и зон выпадения карбидов и некоторых других фаз из твердого раствора.  [c.74]

Влияние сварки на коррозионную стойкость  [c.81]

Сварка ведется на постоянном токе обратной полярности. Сварку необходимо выполнять короткой дугой, с большой скоростью, без задержек на одном месте, за один проход. Перегрев в зоне влияния снижает коррозионную стойкость сварных соединений.  [c.571]

Такие места концентрации напряжений, как кромки трубных отверстий коллекторов экранов и участки присоединения к этим коллекторам труб в зонах термического влияния сварки, могут подвергаться коррозионному растрескиванию в условиях частых кислотных промывок экранной системы, особенно при недостаточном ингибировании кислоты или разрушении ингибитора. В качестве примера на  [c.116]

Процесс сварки оказывает влияние на механические и физические свойства металла в сварно.м соединении. Степень этого влияния зависит от состава металла, от применяемого метода сварки и от технологии процесса. Так, для обеспечения удовлетворительного качества шва обычную контактную сварку таких металлов, как высокопрочные алюминиевые сплавы, молибден и сплавы титана приходится вести при относительно больших давлениях, прикладываемых к свариваемым поверхностям, и высоких температурах нагрева. Это приводит к резкому снижению прочности и пластичности. металлов и ухудшению их коррозионной стойкости.  [c.263]

Стек лов О. И., Акулов А. И. О влиянии остаточных сварочных напряжений и вида напряженного состояния на коррозионное растрескивание сварных соединений. — Автоматическая сварка , 1965, № 2.  [c.79]

Обычно рассматривают два вопроса при испытании сварных соединений. Первый связан с изучением коррозионной стойкости самого сварного шва. Второй, н обычно главный, направлен на решение вопроса теплового воздействия в процессе сварки, которое понижает коррозионную стойкость основного металла вблизи сварного шва (для нержавеющих сталей так называемая коррозия по зоне термического влияния ).  [c.539]

Местный и кратковременный характер приложения тепла в процессе сварки влечет за собой быстрый последующий его отвод преимущественно в свариваемые детали. Таким образом, происходит своеобразная термическая обработка свариваемого металла в зонах, прилегающих к шву, и создаются особые условия для его кристаллизации. Процесс кристаллизации начинается на основном свариваемом металле, который является анизотропной подкладкой. Небольшой объем сварочной ванны и анизотропная подкладка исключают возможность процесса объемной кристаллизации, а интенсивный теплоотвод в основной металл способствует росту кристаллов с вполне определенной ориентацией. Определенная направленность укладки сварных валиков в процессе сварки, как это видно из приведенных на фиг.З макроструктур многослойных сварных соединений, и правильная ориентировка столбчатых кристаллов в направлении теплоотвода приводят к образованию текстуры. Естественно, что эти условия должны оказывать влияние на свойства сварного соединения и в ряде случаев могут приводить к значительному местному изменению прочностных пластических и коррозион-  [c.158]

Экспериментально автором и сотрудниками на разных металлах было показано, что различные технологические операции, приводящие к изменению структуры, но не фазового состава сплава, не влияют на его коррозионную стойкость. Подобные испытания для ниобиевых сплавов были проведены в НИИХИММАШе. При этом было показано, что такие технологические операции, как сварка, гибка, вальцовка, штамповка и др., не оказьшают влияния на коррозионную стойкость этих сплавов.  [c.67]

Коррозия, имеющая место в производстве этаноламинов, обусловливается присутствием примесей. В частности, большое влияние на коррозионную стойкость металлов оказывает двуокись углерода. Этаноламины легко поглощают ее, и на этом их свойстве основано широкое использование этаноламинов для очистки промышленных газов от СОг. Дымовые газы, содержащие 10—20% СОг, поступают в абсорбер. Туда же подается 10—30% водный расгвор моноэтаноламина. Далее очищенный газ выбрасывается в атмосферу, а раствор моноэтаноламина, содержащий двуокись углерода, поступает на регенерацию в десорбер, где нагревается до кипения ( 120°С). Аппаратура установок очистки промышленных газов, изготовленная из углеродистой стали, интенсивно корродирует, причем коррозия носит неравномерный и язвенный характер. Сильнее всего корродируют аппараты, работающие при температуре выше 100° С, особенно в местах сварки. Сталь Х18Н10Т в условиях работы кипятильников этих аппаратов также нестойка. Кипятильники из- углеродистой и нержавеющей стали имеюг практически одинаковый срок службы [5—7].  [c.52]

Практически минимальное количество углерода в прокатной -стали и проволоке, изготовляемых для промышлениого применения, составляет 0,06%. Введение в такую сталь добавочных количеств химически стабилизирующих элементов титана или ниобия делает ее, как правило, не склонной к межкристаллитной коррозии без специальной термообработки. Такие стали могут применяться для изготовления сварной химической аппаратуры и деталей, работающих в интервале 500—700°. Терми-черкая обработка таких изделий, как правило, необязательна. Содержание углерода в проволоке для сварки ответственных деталей и особенно деталей, работающих в тяжелых условиях коррозии, как это имеет место в химической промышленности, не должно превышать 0,06%. Чем ниже содержание углерода в присадочном материале, тем выше качество сварного шва. В те с случаях, когда хромо-никелевые стали применяются в условиях умеренного воздействия коррозионных агентов, содержание углерода не оказывает большого влияния на коррозионную стойкость в том случае, если он находится в твердом растворе и для изготовления деталей может применяться сталь с содержанием углерода 0,07—0,12%.  [c.11]


Азот оказывает косвенное влияние на коррозионную стойкость сварных соединений аустенитных сталей, предотвращая наклеп металла в околошовной воне [40]. Так, при сварке стали 03Х18Н11, содержащей 0,02% углерода, обнаруживается более интенсивная коррозия в зоне, прилегающей к шву (рис. 1.38). Это вызвано тем, что в околошовной зоне возникают напряжения в металле и его наклеп. В средах повышенной агрессивности наклепанный металл околошовной зоны в паре с металлом, расположенным вдали от шва, является анодом и растворяется более интенсивно. При введении в сталь 0,26% азота повышаются ее прочностные характеристики — предел текучести возрастает от 25 до 41 кГ/мм. Благодаря этому предотвращается наклеп металла в околошовной зоне и степень ее коррозии становится равной степени коррозии свариваемого металла.  [c.68]

Напряжения оказывают определенное влияние на коррозию металлов и заслуживают особого внимания со стороны конструкторов. Эти вопросы подробно рассмотрены в гл. VII. Концентрация напряжений, возникающих при штамповке и сварке, так же как и сильные местные напряжения, возникающие в результате неправильного конструирования, могут ускорить процесс коррозии металлов. Имеется значительное количество данных, подтверждающих, что при наличии в металле остаточных напряжений или приложенных извне нагрузок могут образоваться локальные гальванические элементы. В результате на участках металла, подверженных действию наибольщих напряжений, появляются коррозионные поражения в виде трещин.  [c.88]

Сварку листов осуществляли встык с применением электродуговой ручной сварки и автоматической сварки под флюсом. Ручную электродуговую сварку выполняли качественными электродами с различным составом покрытия с фтористокальциевым покрытием (марки УОНИ 13/45 и АНО-7) и рутиловым покрытнем (марки МР-3 и АНО-4). Химический состав металла сварных швов й основного металла приведен в табл. 8. Автоматическую сварку производили на сварочном тракторе ТС-17Р под слоем плавленого флюса АН-348А. Исследование влияния термической обработки на коррозионное поведение сварных соединений вели на образцах после двух видов отжига низкотемпературного (/ = 680 °С) и полного (i = 920 Q,  [c.237]

Молибден. Улучшая технологичность аустенитных материалов при сварке и общую коррозионную стойкость, молибден повышает их склонность к КР. Еще более отрицательный эффект получается при одновременном легировании молибденом и марганцем. Молибден оказывает отрицательное влияние на стойкость аустенитных сталей против КР уже с сотых долей процента. Влияние молибдена, иногда, может быть снивелировано положительным влиянием углерода или других легирующих элементов (никеля, меди).  [c.72]

Во всех случаях проектирования химической аппаратуры из нержавеющих сталей следует учитывать необходимость проведения термической обработки для некоторых марок сталей в целях повышения коррозионной стойкости, поскольку структурные изменения, происходящие в металле в результате нагрева, например, при штамповке или сварке, как правило, оказывают существенное влияние на его коррозионную стойкость. Следует также учитывать, что сортовой профиль нери<а-веющих сталей заводами черной металлургии поставляется преимущественно термически необработанным. При применении нержавеющих сталей различных марок, в том числе сталей с пониженным содержанием никеля, необходимо строго соблюдать технологию переработки металла уделять большое внимание вопросам сварки сталей (правильности выбора сварочных электродов и соблюдению определенных режимов сварки).  [c.66]

Исследование влияния режимов микроплазменной и контактнороликовой сварки гибкой части изделий с ГМО на коррозионную стойкость и коррозионно-усталостную долговечность сварных соединений сталей типа 18-10.  [c.4]

Степень остаточной деформации стали 12Х18Н10 при формировании гибкой части компенсатора из ленты методом сварки вследствие технологической наследственности, по данным литературных источников, не превышает 13 % (соответствует остаточным напряжениям менее 400 МПа). Таким образом, проведенные исследования показали, что суш,ественного образования мартенсита деформации как анодной составляющей микроструктуры стали (у- Мд превращение) в количествах, достаточных для усиления коррозии, при принятой технологии изготовления гибкой части компенсаторов не происходит. Исследованный диапазон варьирования скоростей деформирования (скоростей сварки) не оказывает практического влияния на повышение коррозионной активности стали.  [c.10]

Проведенные малоцикловые коррозионно-усталостные испытания и металлографические исследования показали, что скорости микроплазменной сварки оказывают неоднозначное влияние на усталостную и коррозионноусталостную при внешней анодной поляризации долговечности сварных соединений стали 12Х18Н10Т.  [c.17]

Показано неоднозначное влияние скорости микроплазменной сварки и частоты импульсов тока контактно-роликовой сварки гибкой части металлорукавов на коррозионно-усталостную долговечность и коррозионную стойкость сварных швов стали 12Х18Н10Т. В диапазонах регламентированных режимов микроплазменной и контактно-роликовой сварки, используемых для изготовления гибкой части изделий с ГМО, установлены области рабочих параметров, позволяющие получать сварные соединения с наибольшей коррозионно-усталостной долговечностью в условиях анодной поляризации (скорость 70-80 м/ч при микроплазменной сварке и частота 25 имп./мин при контактно-роликовой).  [c.22]

Давыдов С.Н., Козлова (Чурилова) Т.В. Влияние режимов контактношовной сварки на коррозионно-усталостную долговечность сварного соединения тонколистовой стали 12Х18Н10Т в условиях анодной поляризации// Инновации в машиностроении Сб. ст. II Всерос. науч.-нракт. конф. - Пенза, 2002.-С.123-126.  [c.24]

Значительное влияние на сопротивление усталости элементов конструкций оказывают следующие факторы конструкционные (размеры деталей, концентрация напряжений) технологические (состояние поверхности, структура и термическая обработка, поверхностная обработка, сварка) эксплуатационные (асимметрия дакла, вид напряженного состояния, режим и частота нахружения, температура, коррозионные среды, фретгинг-коррозия).  [c.291]

Учет структурных изменений, воз-никаюш,их в металле при сварке, имеет большое значение для получения химически стойкой аппаратуры. В некоторых высокопрочных и нержавеющих сталях наблюдается часто сильное изменение структуры металла в зоне термического влияния на расстоянии 10— 15 мм от сварного шва. Эта зона имеет, как правило, пониженную коррозионную стойкость и подвергается более сильной общей коррозии. В этих местах часто наблюдается и коррозионное растрескивание. Кроме структурных изменений, в этом явлении играют определенную роль и остаточные напряжения в металле. Вообще отмечено, что даже в отсутствие структурных изменений наибольшая коррозия при сварке листов внахлестку наблюдается в зоне, лежащей между швами это, очевидно, объясняется концентрацией напряжений в этом месте. Поэтому рекомендуется там, где габариты аппарата позволяют, снимать внутренние напряжения посредством последующей термической обработки готового аппарата. При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения с целью восстановления исходной структуры и снятия внутренних напряжений. Методы и аппаратура для местного нагрева разработаны. Вопро-  [c.432]


Ниобий и тантал имеют одинаковые параметры решетки, весьма близкие ионные и атомные радиусы, не подвержены полиморфным превращениям и при сплавлении друг с другом образуют непрерывный ряд гомогенных твердых растворов [55—58]. С увеличением содержаияя тантала коррозионная стойкость сплавов ниобий — тантал повышается, приближаясь к стойкости чистого тантала [49]. Сплавы этой системы с успехом могут заменить чистый тантал во многих химических производствах и в значительной мере снизить его расход. Использованию этих сплавов способствуют и их хорошие механические и технологические свойства, а также отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением. Они хорошо свариваются аргоно-дуговой сваркой. Экспериментально также установлено, что сплавы ниобий—тантал могут применяться в нагартованном состоянии, так как скорость коррозии их в зависимости от степени деформации изменяется незначительно, а именно на 0,01—0,02 мм год [59]. Указанное свидетельствует о том, что увеличение плотности дислокаций в решетке, повышающее уровень внутренних напряжений в результате деформации [60], сопровождающееся изменением структуры от полиэдрической до волокнистой, не оказывает существенного влияния на изменение химической стойкости сплавов ниобий — тантал. Результаты исследования микроструктур указывают, что ни коррозионная  [c.85]

На коррозионную стойкость сварного соединения оказывает влияние способ соединения (внахлестку, в угол, встык на медной подкладке или флюсовой подушке, односторонняя или двухсторонняя встык, двухсторонняя многопроходная и т. д.) разделка кромок (V-, Х-, и-о разная, ступенчатая с притуплением и др.) толщина свариваемых листов симметричность массы металла относительно шва остающиеся подкладки и пр. Как указывалось, на коррозионную стойкость металла и, следовательно, сварных швов влияет время пребывания при так называемых критических или опасных температурах в процессе сварочного цикла назрев— охлаждение. Это время при разных видах сварки различно. Например, при ручной газовой (ацетилено-кислородной), дуговой в защитном газе (аргоно-дуговой) и дуговой (покрытым электродом) способах сварки для образования сварного соединения необходимы различные затраты погонной энергии (табл. 4).  [c.43]

Одним из мероприятий по обеспечению равнопрочности (при сохранении пластических характеристик) сварного соединения при сварке сплавов в нагартованном или термически обработанном состоянии является утолщение кромок в зоне сварки, полученное механической обработкой или химическим фрезерованием. Что касается толщины зоны утолщения кромок стыкуемых деталей, то она определяется расчетным путем, исходя из условий равнопрочности сварного соединения с основным металлом. К важнейшим рычагам повьпцения механических свойств сварных соединений относятся проковка, прокатка роликами сварного соединения в холодном или теплом состоянии. Названные технологические операции подлежат всесторонней проверке с целью определения их влияния на пластичность и коррозионную стойкость сварных соединений.  [c.107]


Смотреть страницы где упоминается термин Сварка, влияние на коррозионное : [c.486]    [c.41]    [c.340]    [c.177]    [c.103]    [c.14]    [c.46]    [c.55]    [c.151]    [c.294]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.0 ]



ПОИСК



Сварка, влияние на коррозионное растрескивание



© 2025 Mash-xxl.info Реклама на сайте