Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Базирование деталей. Установка деталей при обработке на станках

БАЗИРОВАНИЕ ДЕТАЛЕЙ. УСТАНОВКА ДЕТАЛЕЙ ПРИ ОБРАБОТКЕ НА СТАНКАХ  [c.36]

Освещены вопросы базирования и установки деталей при обработке на станках, точности обработки, выбора заготовок, технологичности деталей и машин. Даны основы технического нормирования.  [c.535]

В учебнике изложены основные положения технологии машиностроения, освещены вопросы базирования и установки заготовок при обработке на станках, точности обработки и сборки, технологичности конструкции деталей и рационального выбора заготовок, а также принципы проектирования технологических процессов обработки резанием и сборки машин. Приведены сведения об электроискровой, анодно-механической и ультразвуковой обработках, а также методы изготовления деталей из пластмасс. Рассмотрены технологические процессы обработки резанием типовых деталей машин и узловой сборки.  [c.2]


Приспособления для установки валов. При обработке на токарных станках с ЧПУ заготовок деталей типа валов заготовки устанавливают в центрах. Передача крутящего момента заготовкам осуществляется поводковыми патронами. К таким патронам предъявляется ряд требований. Они должны обеспечивать 1) передачу максимального крутящего момента при черновой обработке 2) возможность обработки заготовки с одной установки и на высоких частотах вращения шпинделя 3) возможность базирования заготовки по торцу 4) возможность быстрой переналадки с центровой на патронную обработку.  [c.16]

Приспособлением для механической обработки называется дополнительное устройство к станку, служащее для установки и закрепления обрабатываемой детали. Приспособления применяют и для выполнения сборочных и контрольных операций. Применение приспособлений обеспечивает правильное базирование детали, сокращение времени на установку детали при обработке, сборке и контроле, повышение точности обрабатываемых деталей, облегчение труда работающих, улучшение использования оборудования, безопасность работы. По степени специализации приспособления делятся на следующие группы.  [c.39]

На станке этой модели при обработке отверстий по координатам, заданным в декартовой системе координат, обрабатываемая деталь устанавливается на столе станка. При этом базовые поверхности обрабатываемой детали должны быть расположены параллельно координатным осям станка, т. е. по направлению перемещения шпиндельной бабки и стола станка. Проверка правильности базирования детали относительно координатных осей станка обычно производится с помощью индикатора, установленного на оправке, закрепленной в шпинделе станка. Перемещая стол станка вместе с обрабатываемой деталью относительно шпинделя или шпиндельную бабку Станка относительно обрабатываемой детали и следя за показанием индикатора, добиваются правильной установки детали.  [c.155]

Полное время переподготовки производства при смене деталей или Изделий состоит из времени 1) анализа чертежа детали и технических условий 2) выбора рациональной заготовки 3) разработки маршрута технологического процесса с учетом применения оборудования, оснащенного СПУ 4) определения объема и содержания операций на станках с СПУ, расчет режимов резания и нормирование 5) определения экономической целесообразности применения СПУ для обработки данной детали 6) выбора приспособлений, режущего инструмента, определения способа базирования детали 7) расчета опорных точек траектории режущего инструмента, последовательности их работы при обработке детали 8) полного расчета траектории режущего инструмента и кодирование на программоносителе в виде, удобном для управления станком 9) установки приспособлений и режущего инструмента на станке и программоносителя в командоаппарате, определение начальных точек отсчета 10) закрепления заготовки 11) обработки детали 12) снятия детали.  [c.554]


Круглую деталь устанавливают отверстием на жесткую оправку для обработки лыски фрезой на фрезерном станке (рис. П.2, б). При такой установке между отверстием детали и жесткой оправкой приспособления образуется зазор и возникает погрешность базирования. Измерительной базой для обрабатываемой поверхности 1 является ось обрабатываемой детали, а осью установочной поверхности — ось оправки. Вследствие зазора S между деталью и оправкой оси детали и оправки не совпадают и измерительная база — ось детали может перемещаться вверх и вниз при смещении дета-  [c.14]

Расположение детали на схеме приспособления должно соответствовать ее положению в станочном приспособлении при обработке детали на соответствующем станке. В случае установки детали в. приспособление не по конструктивным, а но вспомогательным технологическим базам технолог должен рассчитать погрешности базирования и произвести пересчет допусков на базисные размеры и на эскизе детали проставить новые расчетные допуски. Конструктор, получив от руководителя группы задание на разработку специального станочного приспособления для обработки деталей на соответствующем станке, проводит следующую работу  [c.231]

Погрешностью базирования называется погрешность, вызываемая отклонениями в положении заготовки при ее установке вследствие неточности формы и размеров заготовки. Погрешность базирования возникает, если измерительная база не совпадает с установочной базой при обработке деталей на станке, настроенном на размер.  [c.44]

В условиях серийного производства обработку заготовок корпусных деталей осуществляют с применением приспособлений, что полностью исключает разметку заготовок и их выверку при установке на станок. Наиболее удобно и целесообразно базировать заготовки корпусных деталей по базовой поверхности и двум точным установочным технологическим отверстиям на этой поверхности, обработанным по 2-му классу точности и расположенным по диагонали или на одной линии с максимально возможным расстоянием между отверстиями. Данный метод базирования позволяет использовать однотипные приспособления на большинстве операций. В этом случае в качестве установочной базы на первой операции целесообразно выбирать поверхности основных отверстий п обрабатывать базовую поверхность. На второй операции обрабатывают технологические отверстия.  [c.263]

Широкого внедрения заслуживают универсальные приводы, механизирующие ручной зажим. Примерами таких приводов являются привод с пневмоцилиндром, показанный на фиг. 212, или привод с пневмокамерой, показанный на фиг. 213. Такого типа приводы устанавливаются на столах станков и соединяются рычажной системой с приспособлениями, служащими для установки и закрепления деталей. С помощью этих приводов удается механизировать закрепление деталей, повысить точность установки и сократить вспомогательное время даже при обработке деталей в небольших количествах. Широкое применение пневматические зажимы находят в приспособлениях для обработки деталей, изготовляемых в значительных количествах. Примером может служить приспособление для обработки двух базирующих отверстий в основании блока цилиндров автомобильного двигателя (фиг. 214). Блок цилиндров весом 140 кг вкатывается по рольгангу в приспособление до упора. Поворотом рукоятки 1 два пневматических зажима 2 слегка прижимают блок к базам задней стенки приспособления, причем загорающаяся лампочка сигнализирует рабочему правильность базирования блока. При дальнейшем повороте рукоятки I происходит подъем блока и его прижим к базам верхней плиты приспособления при помощи двух пневматических прижимов 3. На замену одной детали другой затрачивается в среднем 10—14 сек.  [c.300]

Погрешность установки детали на станке. Перед тем как начать обработку детали, ее следует правильно координировать относительно режущего инструмента (в приспособлении или непосредственно на столе станка) и в этом положении зафиксировать на все время выполнения операции. Зафиксировать установленную деталь можно с помощью зажимного устройства. Однако установка и закрепление могут быть выполнены с определенной погрешностью. Погрешность установки зависит от правильного выбора технологической базы, точности и чистоты поверхности, принятой за технологическую базу. Кроме того, она зависит от точности и чистоты поверхности приспособления или станка, на которую устанавливается обрабатываемая деталь. Снятие припуска с обрабатываемой поверхности производится после установки инструмента на стружку с выдерживанием определенного размера от технологической базы. Таким образом, под погрешностью установки понимается погрешность базирования детали на данной операции и погрешность закрепления. Если за установочную поверхность принята конструкторская база, то погрешность базирования может быть равна нулю, и в этом случае погрешность установки равна погрешности закрепления детали на рассматриваемой операции. В некоторых случаях обработки вполне обосновано принимают за установочную поверхность не конструкторскую базу, а вспомогательную поверхность, если вспомогательная поверхность имеет более жесткие размерные связи с обрабатываемой поверхностью, чем конструкторская база. Выбор технологических баз при механической обработке деталей и погрешности базирования подробно изложены в отдельной главе курса.  [c.45]


Помимо рассеяния размеров, точность обработки зависит так же от погрешности базирования при установке детали для обработки. Например, устанавливая обрабатываемую деталь на плоскость рр (фиг. 32) и выдерживая размер В от плоскости qq при обработке на предварительно настроенном станке, будем иметь колебания размера В, зависящие не только от рассеяния размера В, но также и от колебания размера А в пределах установленного на этот размер допуска 8 в связи  [c.41]

Наиболее часто применяются следующие типовые схемы установки и базирования деталей при обработке на строгальных станках деталей призматической формы— по плоскостям, цилиндрических — по наружной поверхности.  [c.152]

Наиболее часто применяются следующие типовые схемы установки и базирования при обработке деталей на фрезерных станках  [c.158]

Правильное соединение деталей с помощью шпонок определяется не только выдерживанием точных размеров шпоночных канавок, но и правильным их расположением относительно оси. При обработке шпоночных канавок на партии валов любым способом, но на настроенном для данной работы станке положение оси вала должно быть постоянным. Это достигается установкой валов на призму или в самоцентрирующих тисках. В этом случае отклонения диаметра вала в любых пределах не оказывают влияния и его ось примет постоянное положение, а следовательно, и шпоночная канавка получит правильное положение относительно оси вала. При установке валов в обычных тисках с базированием на неподвижную губку возможно смещение положения оси вала, а следовательно, и шпоночной канавки на величину, равную половине допуска на вал. Шпоночные канавки в отверстиях шкивов, зубчатых колес, муфт и т. д. обрабатывают протягиванием. Применяемые протяжки имеют прямоугольную форму, простую и удобную в изготовлении. Для направления и центрирования протяжки применяют специальные переходные втулки (адаптеры) различной конструкции.  [c.198]

При изготовлении деталей невозможно получить абсолютно точно один и тот же заданный размер не только у целого ряда обрабатываемых деталей, но даже и на одной детали в разных ее сечениях. Основные источники появления некоторых отклонений от заданных размеров И, формы изделий следующие 1) неточность изготовления и износ в процессе работы оборудования (станков, прессов и т. д.), приспособлений для обработки, режущих инструментов неоднородность заготовок деталей по размерам, форме, твердости и механическим свойствам 2) неточность базирования заготовок при установке на станки и их неточное закрепление в приспособлениях 3) температурные влияния, приводящие к изменению размеров отдельных частей оборудования, приспособлений, режущих инструментов и обрабатываемых деталей 4) неоднородность режимов обработки (скоростей, подач, глубин резания и др.) 5) вибрации фундамента под оборудованием и т. д.  [c.194]

После первой операции обработки на всех последующих операциях черновые базы должны быть заменены обработанными, чистовыми базами. Исключением может являться обработка на револьверных станках, полуавтоматах и многошпиндельных автоматах, когда деталь частично или полностью обрабатывается с одной первоначальной установки по черновой базе. При выборе чистовых установочных баз следует по возможности руководствоваться принципом совмещения баз. В общем виде принцип совмещения баз заключается в использовании в качестве установочной базы конструкторской и измерительной баз. В качестве базовой поверхности выбирают поверхность детали, относительно которой в чертеже детали координировано положение данной обрабатываемой поверхности. При совмещении установочной базы с конструкторской базой погрешность базирования равна нулю. На рис. 7 в качестве примера показаны чертеж детали и совме-  [c.31]

Погрешность обработки А бр определяется поведением самих станков, инструментов и деталей в процессе обработки. Эта погрешность при работе на настроенных станках в общем не зависит от действия рабочего (составляющие погрешности А др рассмотрены в ряде предшествующих работ). Вторая часть погрешности—погрешность настройки Ад —зависит от того, насколько точно расположен инструмент относительно поверхности, до которой должен быть выдержан размер. Кроме того, на погрешность настройки-влияют погрешности установки и закрепления Ауст и правильность выбранной схемы базирования Аба,,  [c.141]

Применение хомутиков и поводковых патронов при обработке деталей типа валов с установкой в центрах требует затрат времени на установку, снятие и зажим хомутиков. Крепление хомутиков непосредственно на обрабатываемой детали не позволяет вести сквозную обработку валов. Из-за разной глубины зацентровки заготовок имеет место смещение обрабатываемых деталей в осевом направлении, а это не позволяет производить обработку ступенчатых деталей по упорам и копирам. Для устранения этих недостатков применяют различные конструкции утопающих поводковых центров. ГОСТ 18257—72 предусмотрены поводковые центры, совмещенные с вращающимися центрами для базирования и сообщения вращения деталям типа валов при обработке их на токарных станках. Такие поводковые центры (рис. 61) изготовляются двух типов тип А — центры поводковые зубчатые исполнение 1 — прямые (рис. 61, а), исполнение 2 — обратные (рис. 61, б) тип Б — центры поводковые штырьковые (рис. 61, в).  [c.141]

Базирование заготовки должно обеспечить ее однозначное положение на станке при обработке всех поверхностей и отверстий с требуемой точностью их взаимного расположения. Выбор базовых поверхностей должен производиться таким образом, чтобы обеспечить соблюдение принципа совмещения баз. Выбранные базы должны обеспечить удобство установки заготовки в рабочей зоне станка. При ориентации заготовок типа тел вращения в качестве установочных базовых поверхностей принимают наружные или внутренние цилиндрические поверхности, а также поверхности центровых гнезд. При ориентации заготовок плоскостных и корпусных деталей с обработанными базовыми / поверхностями в качестве базовых Поверхностей применяют в основном три плоскости, плоскость и два отверстия или плоскости и отверстие.  [c.21]


Учитывая разнообразие условий обработки (схем базирования, применяемого режущего инструмента, обрабатываемых деталей, компоновок станков и др.), необходимо найти то общее в механизме возникновения механических колебаний при резании, что присуще в целом каждой технологической системе. Для этого рассмотрим более подробно технологические факторы, приводящие к возбуждению механических колебаний, и особенности их проявления в процессе обработки детали. Влияние технологических факторов на параметры механических колебаний обусловлено тремя этапами процесса обработки детали на металлорежущих станках первый (установка) — координирование и закрепление обрабатываемого объекта производства с требуемой точностью второй (статическая  [c.258]

Отверстия в фасонном инструменте или дисковые фрезы после шлифования торцов шлифуют в приспособлении с базированием по отверстию. Деталь центрируют с помощью установочного двухступенчатого калибра. Направляющую ступень калибра вводят в направляющее отверстие зажимного приспособления, а центрирующую ступень —в отверстие шлифуемой детали. Для лучшей установки шлифуемой детали центрирующая ступень имеет конусность. После закрепления детали в зажимном приспособлении калибр удаляют. Отверстия притирают мелкозернистым абразивным порошком разжимньши чугунными притирами на токарно.м или сверлильном станке. На притирку оставляют припуск 0,02—0,05 мм. Применяют также окончательную обработку отверстий хонингованием эльборовыми брусками. Хонин-гование эльборовыми брусками применяют при снятии припусков до 0,1—0,2 мм. Оптимальная характеристика брусков Л 20 М1 — 100 % режимы до 40 м/мин Уцр = 8 м/мин, СОЖ — керосин. Удельный расход эльбора 0,5 мг на 1 г снятого металла.  [c.114]

Процесс обработки деталей на станках складывается из трех этапов, выполняемых последовательно во времени. Первым является процесс установки детали на базы станка или приспособления, ее базирования на приспособлениях с требуемой точностью и закрепления для сохранения достигнутой точности на все время обработки. После установки детали есуществл ется статичеекая-(т. е. без рабочих нагрузок) настройка размерных и кинематических цепей системы СПИД на требуемую точность — второй этап. Настройка заключается в установке на требуемых расстояниях режущих кромок инструмента относительно баз станка или приспособления (иногда относительно баз обрабатываемой детали), базирующего деталь. Иногда рассмотренные этапы меняются по времени местами. Третьим этапом является динамическая (т. е. при возникновении рабочих нагрузок) настройка тех же цепей системы СПИД.  [c.12]

При изготовлении насадных шестерен с конусным отверстием, особенно крупных размеров, базирование колеса при зубонарезании по посадочному отверстию может не обеспечить достаточной жесткости установки детали на станке. В этих случаях, особенно при изготовлении колес из цементируемых сталей или с поверхностной закалкой зубьев (сохранение невысокой твердости на поверхности отверстия), возможно более рациональное базирование шестерни на зубообработке до термической обработки (фиг. 5, а). В этом случае до термической обработки в заготовке обрабатывается цилиндрическое отверстие б в качестве опорной базы используется торец А, противоположный большему диаметру конусного отверстия Б, После термической обработки растачивается посадочное отверстие Б. причем деталь устанавливается на станке по зубчатому венцу с опорой в торец А, что обеспечивает минимальное изменение ориентирования зубьев относительно оси вращения колеса в л еханиз.ме.  [c.86]

Погрешности приспособлений, включая неточность базирования детали, во многих случаях непосредственно передаются на обрабатываемую деталь. К такого рода погрешностям относятся непараллельность базовых поверхностей основной плоскости, фрезерных, сверлильных, ш ифовальных и других приспособлений, эксцентричность и биение установочных оправок, отклонения в расположении кондукторных втулок, неперпендикулярность установочных упоров, искажение положения детали при зажиме и ряд других. Необходимо при каждой новой переустановке приспособления производить контрольную проверку установки и обработки пробной детали, определяя величину суммарной погрешности приспособления, станка и базирования детали и добиваясь при настройке наименьших отклонений.  [c.310]

Стационарные приспособления предназначены только для выполнения определенной операции обработки детали на одном определенном агрегате (станке). Эти приспособления выполняют сле-дукмцие функции предварительное ориентирование обрабатываемой детали, базирование, окончательное ориентирование и фиксирование ее в этом положении, закрепление и раскрепление, направление режущих инструментов при обработке. В стационарных приспособлениях детали устанавливаются автоматически. Это осуществляется специальными питателями, которые могут совершать относительно простые пространственные перемещения деталей. Следовательно, подача деталей с транспортера в стационарное приспособление, установка детали на базовые поверхности, ее фиксация, закрепление, раскрепление и перемещение из рабочей, даны станка на транспортер должны осуществляться простыми пространственными движениями питателя. Стационарные приспособления используют на автоматических линиях в основном для деталей, неподвижных при, обработке (головки и блоки цилиндров двигателей и т. д.).  [c.338]

Выбирая постоянные опоры, их размеры и расположение, учитывают влияние на точность обработки отклонений от плоскостности технологических баз заготовок. При изготовлении хмрпусных деталей (блока цилиндров, картера и т. п.) откло-пения формы технологических баз, обработанных чистовым фрезерованием на агрегатных станках, достигают 0,05—0,1 мм. При установке такими базами на постоянные опоры с плоской, насеченной или сферической головками (по ГОСТ 13440-68 ГОСТ 13442—68) погрешность базирования составляет SOTO % допуска плоскостности базы, а при установке на опорные пластины (но ГОСТ 4743—68)—до 30%. В последнем случае, наряду с погрешностью базирования, возникает увеличенная погрешность закрепления. Это объясняется наличием зазоров в стыке между опорными пластинами и технологической базой заготовки, форма которой характеризуется отклонением от плоскостности. Величина таких зазоров достигает 0,1—0,2 мм. Их наличие  [c.333]


Смотреть страницы где упоминается термин Базирование деталей. Установка деталей при обработке на станках : [c.117]    [c.233]    [c.55]    [c.32]    [c.97]   
Смотреть главы в:

Технология машиностроения  -> Базирование деталей. Установка деталей при обработке на станках



ПОИСК



Базирование

Базирование деталей

Базирование деталей при обработке

Установка деталей на станке

Установка детали

Установка пил в станок



© 2025 Mash-xxl.info Реклама на сайте