Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адсорбция кислорода

В системе выпуска двигателей происходят реакции окисления окиси углерода и углеводородов ОГ с избыточным кислородом. Эти процессы при относительно невысоких для реакций в газовой среде температурах (300. .. 800 С) проходят с малой скоростью. Для ускорения протекающих реакций используют катализаторы. Механизм действия катализатора сложен. В основе окислительных процессов, протекающих на катализаторах, лежат процессы диссоциативной адсорбции кислорода и продуктов неполного сгорания, вследствие чего скорость их химического взаимодействия резко возрастает.  [c.64]


Первой стадией взаимодействия металлов с коррозионной средой является адсорбция окислительного компонента среды (Oj, Н2О, СО2, SO. и I2) на поверхности металла. Сопоставление теплот образования окислов и адсорбции кислорода на металлах  [c.29]

Теплоты образования окислов и адсорбции кислорода на металлах (по Бенару)  [c.29]

Рис. 20. Схема образования двойного электрического слоя на поверхности металла и его изменение под влиянием адсорбции кислорода Рис. 20. <a href="/info/771132">Схема образования</a> <a href="/info/106282">двойного электрического слоя</a> на <a href="/info/194926">поверхности металла</a> и его изменение под влиянием адсорбции кислорода
Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами d-уровней, что переводит его в активное состояние.  [c.309]

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]


При соприкосновении двух поверхностей контакт происходит не по всей площади, а лишь на относительно небольшом числе выступов шероховатостей. В результате скольжения поверхностей друг относительно друга неровности одной поверхности стирают неровности противоположной и образуется гладкий след. Если эта поверхность металлическая, то здесь сразу же адсорбируется газ или происходит ее окисление. Последующие перемещения шероховатостей стирают пленку оксида они могут и механически активировать реакцию адсорбции кислорода на металле и образования оксида, который, в свою очередь, также стирается (рис. 7.20). Это химическая составляющая разрушения при фреттинге. Кроме того, шероховатости вызывают определенный износ, удаляя частички металла. Это механическая составляющая. Оторвавшиеся частицы металла превращаются в оксид, и поверхность металла через некоторое время начинает истираться о движущиеся частицы в большей степени, чем о противоположную поверхность (в результате низкое вначале электрическое сопротивление между поверхностями становится высоким).  [c.165]

Свободная энергия адсорбции на моль кислорода снижается с увеличением количества адсорбированного кислорода (связь кислород — субстрат становится слабее), поэтому многослойная адсорбция кислорода на металле М способствует в. конечном счете превращению его в кристаллический стехиометрический оксид. Другими словами, AG для реакции  [c.189]

Мы можем также принять во внимание, что окислению предшествует быстрая физическая адсорбция кислорода, вслед за которой с меньшей скоростью идет хемосорбция атомов кислорода. Хемосорбированный кислород в свою очередь взаимодействует с металлом с образованием оксида металла. Эта реакция механически активируется при движении шероховатостей по поверхности металла. Количество оксида, которое образуется в результате такого процесса, лимитируется хемосорбцией. Скорость хемосорбции подчиняется уравнению, идентичному по форме уравнению (27) [6]. Следовательно, какой бы процесс ни преобладал, вид конечного выражения остается по существу одинаковым.  [c.413]

Когда это значение много меньше единицы, квадратичным и последующими членами можно пренебречь. Такие условия возникают преимущественно при высокой нагрузке (малых значениях s), высокой частоте / и большой длине пути I. Константа т для случая окисления металла или адсорбции кислорода на металле эмпирическим путем не определяется с достаточной точностью. Для железа эмпирически полученные значения составляют от 0,06 до 3 с. Принимая удовлетворительными значения т = 0,06 с, / = 10 Гц, 1= 0,01 см, s = 10 см, получаем s/2//t = 0,008. Поэтому, когда реальные условия близки к рассмотренным выше и можно пренебречь более высокими членами логарифмического ряда, получаем  [c.414]

Упрощенная схема процесса н начальной фазе выглядит следующим образом перемещение и деформация поверхностей под действием переменных касательных напряжений коррозия разрушение окисных и других пленок обнажение чистого металла и местное схватывание разрушение очагов схватывания и адсорбция кислорода на обнаженных участках.  [c.141]

До настоящего времени механизм и кинетика роста зародышей оксида на поверхности металла относительно мало изучены. Первоначальными причинами образования зародышей считаются дислокации, примеси и другие поверхностные дефекты. Часто такое расположение зародышей оксида объясняется адсорбцией кислорода на поверхности как фактора, лимитирующего скорость окисления. Адсорбированный кислород, диффундируя на поверхность к растущим зародышам оксида, снижает одновременно концентрацию кислорода в зоне вокруг каждого зародыша и тем самым препятствует возникновению новых. Размеры таких зон и плотность распределения зародышей зависят от запаса адсорбированного кислорода и скорости поверхностной миграции.  [c.47]

Смачиваемость твердых тел феноло-формальдегидной смолой изучали на воздухе. Для всех исследованных твердых поверхностей является общим тот факт, что эти поверхности покрыты слоем кислорода в основном за счет адсорбции, либо окисления. Адсорбция кислорода на алмазе и графите на воздухе при комнатных температурах и выше неоднократно подтверждалась экспериментально [4]. Металлы на воздухе также покрыты слоем физически и химически сорбированного кислорода. Этим общим свойством исследованных твердых поверхностей, по-видимому, можно объяснить одинаковую смачиваемость их феноло-формальдегидной смолой. Смачиваемость и адгезия в исследованных системах должна, очевидно, определяться установлением связей между кислородом твердой поверхности и гидроксильными группами смолы. Деструкция смолы приводит к некоторой потере гидроксильных групп [6, 7, 8], что сказывается на ухудшении смачиваемости (см. табл. 2).  [c.127]


Адсорбция кислорода на металлах и зарождение оксида  [c.33]

На большинстве технических металлов адсорбция кислорода (вплоть до 0>1) протекает необратимо с образованием прочных химических соединений. Одним из показателей, нередко характеризующих прочность связи адсорбированных частиц с поверхностью металла, является теплота адсорбции. Теплоты хемосорбции изменяются в широких пределах — от 80 кДж/моль и меньше для серебра до 800 кДж/моль — для вольфрама.  [c.36]

Исследования, проведенные на никеле, кобальте, меди и других металлах [41], показывают, что дифференциальные теплоты адсорбции уменьшаются с увеличением степени заполнения поверхности кислородом (рис. 10). Возникновение площадок связывается с формированием оксидных слоев и с теплотами образования объемных оксидов. Показано, что имеется соответствие между теплотами адсорбции кислорода и теплотами образования индивидуальных оксидов. Согласно общему правилу, сформулированному К. Танаку и К. Тамару,, теплоты хемосорбции кислорода на различных металлах могут быть определены из эмпирического уравнения  [c.36]

Рис. 10. Изменение теплоты адсорбции кислорода па восстановленной I), на однократно (3) и двукратно (3) регенерированной поверхности кобальта. Рис. 10. Изменение <a href="/info/116130">теплоты адсорбции</a> кислорода па восстановленной I), на однократно (3) и двукратно (3) регенерированной поверхности кобальта.
В структуре (2X2) атомы кис- =еТр" к7у ра лорода располагаются непосредственно над атомами металла. В структуре с (2X2) атом кислорода расположен в центре квадрата, образованного четырьмя атомами металла. Возникновение этих структур сопровождается ростом работы выхода электрона. Указанные структуры обнаружены при адсорбции кислорода на кубических гранях никеля, платины, меди и железа.  [c.39]

Кривая (Кме)обр ЛВС соответствует активному растворению металла, не осложненному побочными явлениями. В точке В возможна адсорбция кислорода на поверхности металла, что приводит к затормаживанию анодной реакции в местах осаждения кислорода. С изменением потенциала от точки В к точке D происходит наряду с растворением формирование защитной пленки адсорбционного или оксидного типа на металлах, способных пассивироваться в данном растворе. При достижении потенциала Vk.u при токе пассивации ( скорость реакции анодного растворения резко уменьшается, достигая минимума в точке Е при потенциале полной пассивации Vs.n- Металл перешел в пассивное состояние. Скорость процесса не зависит от потенциала в довольно широком диапазоне, определяясь скоростью процесса химического растворения пленки в электролите.  [c.22]

Рассматривая адсорбцию кислорода (или ОН-ионов) как причину пассивации металла, следует иметь а виду прямо противоположный эффект адсорбции анионов, приводящий к-увеличению скорости растворения металла в активном состоянии. Очевидно поэтому, что важным является вопрос о том, в каких случаях происходит торможение растворения (т. е.. пассивация) и в каких — активирование процесса ионизации. металла.  [c.120]

Последнее уравнение соответствует случаю слабой адсорбции N0 и средней адсорбции кислорода на поверхности катализатора.  [c.106]

Здесь А — общая поверхность катализатора и 2 — константы скоростей десорбции и адсорбции кислорода соответственно — константа скорости адсорбции NO на центрах.  [c.109]

В процессе эксплуатации котлов и пылеприготовительных установок на твердом топливе необходимо также учитывать способность пыли к самовозгоранию, т.е. воспламенению, происходящему в определенных условиях за счет окисления, в том числе при обычных температурах. Окисление происходит вследствие адсорбции кислорода воздуха и постепенного нагревания вещества за счет теплоты химической реакции окисления.  [c.34]

Адсорбция кислорода на поверхности металла и образование оксида  [c.40]

Скорость адсорбции, как правило, возрастает во времени и происходит тем быстрее, чем выше температура. На рис. 3.7 приведены кинетические кривые адсорбции кислорода на серебре.  [c.40]

Предполагается, что для возникновения иассиниого состояния нет необходимости в полном заполнении всей поверхности адсорбированными кислородными атомами для этого достаточно адсорбции кислорода только на наиболее активных анодных участках (по углам и на ребрах кристаллическо решетки металла). В этом варианте адсорбционная теория является как бы дальнейшим развитием пленочной теории при допущении нарушения сплошности защитного слоя.  [c.64]

В рамках адсорбционной теории значения Фладе-потенциала можно рассчитать термодинамически (см. задачу 2 к гл. 5) как потенциал адсорбции кислорода, с помощью значений энтальпии и энтропии адсорбции, протекающей по схеме 25  [c.81]

Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как NiO разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]


Гатос [20] показал, что оптимальное игнибирование стали в воде с pH = 7,5, содержащей 17 мг/л Na l, происходит при концентрациях, превышающих 0,05 % бензоата натрия или 0,2 % натриевой соли коричной кислоты. С использованием радиоактивного изотопа в качестве индикатора, на поверхности стали, погруженной на 24 ч в 0,1, 0,3 и 0,5 % растворы бензоата натрия, было обнаружено, соответственно, всего лишь 0,07, 0,12 и 0,16 мономолекулярного слоя бензоата (0,25 нм , фактор шероховатости 3). Эти данные подтверждают полученные ранее [12] результаты измерений в бензоате с использованием индикатора Чтобы объяснить, почему столь малое количество бензоата на поверхности металла может увеличивать адсорбцию кислорода или в определенной степени уменьшать восстановление кислорода на катодных участках, требуются дальнейшие исследования. Этот эффект характерен именно для катодных участков на железе, так как при контакте железа с золотом в 0,5 % растворе бензоата натрия восстановление кислорода на золоте, видимо, не замедляется, и железо продолжает корродировать.  [c.264]

Адсорбция кислорода на чистых метал-л а X. Кислород адсорбируется на металлах в виде молекул, атомов и ионов О2, 0 , О. Молеку-.лярная форма адсорбции (О2) при положительных температурах обнаруживается только на металлах, оксиды жоторых в этих условиях нестабильны (серебро, ртуть, ллатина, золото). Критерием обратимости является воз-  [c.35]

Первые сведения о стадиях хемосорбции кислорода на чистых поверхностях металлов были получены посредством измерения работы выхода электрона. На большинстве металлов начальная стадия адсорбции кислорода (0<О,5) сопровождается увеличением работы выхода, причем изменение ее (AlF) линейно растет с увеличением степени заполнения поверхности. Величина прироста работы выхода зависит от кристаллографического инде1<са грани кристалла.  [c.37]

Исследования ингибирования железа хроматами показывают, что пассивирование связано с образованием пленки из окислов железа и хрома, содержащей адсорбированные хромат-ионы. Однако большинство пассивируюш,их агентов способствуют адсорбции кислорода. Они обладают ингибирующим действием только в присутствии кислорода, который следует рассматривать как пассивирующее вещество.  [c.57]

Медь и железб, как установили Мюллер и Барк, имеют наибольшую активность из всех изученных катализаторов. В присутствии медной и железной спиралей в опытах авторов окись азота разлагалась уже при температуре порядка 300 " С. Такие катализаторы, как цинк, марганец, магний, заметно разлагали N0 при температуре / = 500—600 °С. Наименее активными оказались хром, латунь и алюминий. Эти катализаторы практически не ускоряют реакцию в области температур <600°С. При = 300°С, как установлено в работе [268], в результате инактивации катализатора, вызванной адсорбцией кислорода, окись азота разлагалась на железной спирали, восстановленной в атмосфере метилового спирта или водорода, только на 45,7%. При этой температуре N0 на медной спирали разлагалась на 63%, однако уже при / = 400 °С в случае восстановленного железа разложение окиси азота было полным. Для меди разложение N0 на 1007о имело место при температуре / = 500°С.  [c.105]

Этот потенциал можно отождествить с так называемым Фладе-потенциалом Ер. Скорость процесса анодного образования защитной пленки при потенциале Ер (или несколько более положительном) еще очень мала вследствие наличия некоторого перенапряжения процесса. По этой причине, а также из-за химического растворения пленки здесь еще не происходит заметного покрытия поверхности электрода защитной, пленкой. Однако, начиная с этой точки, торможение анодного процесса будет определяться не только концентрационной поляризацией, во и перенапряжением анодного процесса адсорбции кислорода или возникновением защитной пленки. Это добавочное торможение анодного процесса и вызывает отклонение поляризационной кривой от простой логарифмической зависимости.  [c.22]

Несмотря на то, что образующаяся между кислородом и металлом связь имеет ионную природу, эта свяэь по характеру отличается от связи кислорода с металлом в окисле того же стехиометрического состава хотя бь1 в силу неодинаковой взаимной пространственной ориентации. Некоторые авторы [ 2] считают, что хемисорбционная связь характеризуется повышенной стабильностью. В работе [ 3] установлено, что свободная энергия адсорбции кислорода на поверхности сплава Fe — 18Ст при 1100°С превышает на 67 кДж/моль свободную энергию образования в таких же условиях окисла r Oj.  [c.10]

Реакция на поверхности сенсора приводит к изменению электрических свойств, что фиксируется соответствующими измерительными устройствами. Так, в случае Sn02 (и-полупроводник с щириной запрещенной зоны 3,5 эВ) адсорбция кислорода на поверхности приводит к удалению электронов из зоны проводимости и снижению электропроводности. При адсорбции восстановительных газов происходит окисление (например, СО в СО2) и переход электрона в зону проводимости с повышением электропроводности.  [c.104]

Величины удельной поверхности различных типов углеродных воло кон на основе ПАН приведены в табл. 2.4 [33]. Высокопрочные и вы сокомодульные углеродные волокна с необработанной поверхностьк имеют удельную поверхность около 0,5 м /г. В результате обработки удельная поверхность несколько возрастает. Удельная поверхность производимых в Японии углеродных волокон на основе ПАН характеризуется данными, приведенными в табл. 2.4 [34]. Активную поверхность, которую занимают соседние атомы ароматических фрагментов, оп ределяют по химической адсорбции кислорода. При обработке поверхности она увеличивается. По мере снижения температуры прогрева активная поверхность также увеличивается. Наружный слой углеродных волокон обладает сильными дренажными свойствами. В целом углеродные волокна имеют очень низкую гигроскопичность.  [c.46]

В паяных соединениях нахлестиого типа застреванию флюсов и газов особенно благоприятствуют малые капиллярные зазоры. Хотя с увеличением зазора возрастает количество жидкой фазы и, следовательно, газа, однако при этом облегчаются условия дрейфа пор и выхода их из шва. Поэтому в рассматриваемом случае зависимость коэффициента пористости от величины зазора может быть иллюстрирована рис, 19 в области а коэффициент пористости снижается с увеличением зазора, в области б число пор возрастает с увеличением количества жидкого припоя, в области в число пор снижается (несмотря на значительное количество жидкой фазы) вследствие того, что облегчается выход пор при дальнейшем увеличении зазора. Поскольку несмачивание имеет место преимущественно в результате адсорбции кислорода или образования окисной яленки на поверхности твердого тела, все факторы, способствующие процессам раскисления на границе жидкой и твердой фаз, должны  [c.82]

На рис. 3.4 представлена изотерма адсорбции кислорода. Участки аЪ и Ъс отвечают мономолекулярной адсорбции, участок d — полимолекулярной. На рис. 3.5 представлена схема заполнения поверхности металла адсорбированным веществом по теории Брунау-эра.  [c.40]


Смотреть страницы где упоминается термин Адсорбция кислорода : [c.47]    [c.314]    [c.263]    [c.8]    [c.19]    [c.244]    [c.37]    [c.23]    [c.105]    [c.100]    [c.100]    [c.36]   
Смотреть главы в:

Статистическая термодинамика  -> Адсорбция кислорода

Статистическая термодинамика  -> Адсорбция кислорода


Коррозия и защита от коррозии (2002) -- [ c.40 , c.42 ]

Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.51 ]



ПОИСК



Адсорбция

Адсорбция кислорода на металлах

Адсорбция кислорода на поверхности металла и образование оксида

Изменение рельефа поверхности металла при адсорбции кислорода

Кислород

Теплота адсорбции кислорода на металлах

Улита) платины, влияние адсорбции кислорода (работы Эршлера)



© 2025 Mash-xxl.info Реклама на сайте