Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродная сталь -см. Сталь электродная

См. Проволока электродная Сварочно-сборочные приспособления 5 — 315 Сварочное железо — см. Сталь пудлинговая Сварочное оборудование 8—197  [c.252]

Сталь имеет положительный электродный потенциал поверхности также лишь в случае наличия в ней не менее 12 % Сг (см. рис, 4).  [c.10]

Наивысшую коррозионную стойкость нержавеющие стали имеют тогда, когда хром находится в твердом растворе или равномерно распределен в виде дисперсных выделений хромистых карбидов без существенного обеднения твердого раствора. Коррозионная стойкость сталей сильно ухудшается, когда концентрация хрома в твердом растворе уменьшается. Этим объясняется вредное влияние углерода на нержавеющие свойства и электродный потенциал (см. рис. 280).  [c.501]


Снижение скорости анодного растворения стали на активном участке при легировании связано с повышением ее термодинамической устойчивости, что в свою очередь является результатом введения компонентов с благородным электродным потенциалом (см. табл. 1).  [c.9]

В зависимости от химического состава проволоку разделяют на углеродистую (6 марок), легированную (22 марки) и высоколегированную (28 марок). Всего в ГОСТ включено 56 марок проволоки диаметром 0,3—12 мм. Обозначение марок электродной проволоки состоит из букв и цифр, например Св-08 или Св-ЗОХГСА. Первые две буквы Св указывают на назначение проволоки — сварочная для изготовления электродов, а следующие за буквами две цифры и буквы с цифрами аналогичны обозначениям, принятым для углеродистых качественных машиностроительных сталей (см. 4).  [c.201]

Технологические особенности наплавки аустенитного хромоникелевого металла типа В во многом совпадают с особенностями сварки хромоникелевых коррозионностойких сталей (см. гл. 10). При наплавке на углеродистую сталь важно обеспечить минимальную долю основного металла и минимальное содержание углерода в наплавленном слое, если от него требуется повышенная стойкость против межкристаллитной коррозии. Поэтому значительное распространение нашла широкослойная наплавка под флюсом электродной лентой.  [c.740]

В промышленности широко используют низкоуглеродистые стали с защитными покрытиями различного типа (например, оцинкованную, освинцованную, алитированную и хромированную стали, а также сталь с фосфатными покрытиями). Основная трудность сварки таких материалов заключается в активном взаимодействии свариваемого и электродного металлов в контактах электрод - деталь, что приводит к снижению коррозионной стойкости соединения в местах постановки точек и повышению изнашивания электродов. Для сварки таких материалов необходимо корректировать параметры режима по отношению к режимам сварки непокрытых сталей (см. табл. 5.7).  [c.324]

Как ВИДНО из табл. 13, в металле, наплавленном электродами с меловым покрытием, углерода в 4,25 раза меньше, чем в основном металле, и в 2,25 раза меньше, чем в электродной проволоке марганца почти в два раза меньше, чем в основном металле или электродной проволоке кремния в 4,32 раза меньше, чем в основном металле. Углерод, марганец и кремний повышают износостойкость металла. Кроме этого, в наплавленном металле кислорода и азота находится в 5—10 раз больше, чем в стали марки Ст. 3. Наличие кислорода в металле значительно снижает его прочность и особенно пластичность (см. фиг. 3, а). Азот несколько повышает пределы прочности и текучести стали при растяжении, но в то же время резко снижает пластические свойства стали (см. фиг. 3, б).  [c.64]


Перенос металла в дуге под флюсом по сравнению с ручной дуговой сваркой (рис. 2.50) обычно мелкокапельный без коротких замыканий и пиков тока и напряжения (рис. 2.50, б). Размер капель тем мельче, чем больше ток. Существенную роль имеет перенос электродного металла паром. Капли обычно пористые (плотность 2...5 г/см вместо 7,8 г/см для стали). Коли-  [c.95]

Распределение марганца между шлаком и металлом. Марганец входит в состав большинства флюсов для сварки сталей в виде МпО, а в электродные покрытия — в виде руды МпОа. Его переход из шлака в металл необходим для раскисления металла и подавления вредного влияния серы (см. с. 402). Марганец вводят в сварочные материалы в виде пиролюзита — марганцовой руды (иногда сильно загрязненной фосфорными соединениями).  [c.362]

Сварку осуществляют на режимах, ориентируясь на справочную литературу, производственные инструкции, операционные технологические карты и личный производственный опыт. К основным параметрам режима дуговой сварки в защитных газах относят диаметр электродной проволоки и ее марку, силу сварочного тока, напряжение дуги, скорость подачи электродной проволоки, скорость сварки, вылет электрода, состав защитного газа и его расход, наклон электрода вдоль оси шва, род тока, а для постоянного тока - и его полярность. В справочной литературе ориентировочные режимы приводятся в виде таблиц, в которые включают лишь основные параметры режима (см. табл. 12). Таблицы сопровождают примечаниями, касающимися параметров, не вошедших в таблицу. Так, табл. 18 составлена для ориентировочных режимов, рекомендуемых для сварки углеродистых и низколегированных сталей в углекислом газе постоянным током обратной полярности для проволок типа Св 08 Г2С-При сварке в углекислом газе обратная полярность тока позволяет получать более высокое качество шва, чем сварка на прямой полярности.  [c.171]

Марка стали Термическая обработка Марка электродной Марка флюса Св, МПа л-си, Дж/см  [c.316]

Никель, так же как и хром, обладает способностью к пассивированию и изменяет электродный потенциал в растворах азотной кислоты, поваренной соли с перекисью водорода и при зачистке под раствором изменяет положительный потенциал на отрицательный (см. рис. 275—277). Пассивирующая способность никеля меньше, чем хрома, молибдена и хромоникелевых сталей типа 18—8 (рис. 283).  [c.495]

С введением в электролит молибдата натрия электродный потенциал стали непрерывно сдвигается в положительную сторону вплоть до защитной концентрации. С дальнейшим увеличением концентрации ингибитора потенциал стали практически не меняется (см. рис. 5,14). Сопоставление кривой изменения интенсивности коррозии с кривой изменения потенциала показывает, что сдвиг потенциала в положительную сторону может сопровождаться как увеличением интенсивности коррозии, так и ее уменьшением. Поэтому по одному изменению потенциала судить о коррозии нельзя.  [c.169]

Изменение строения двойного слоя, связанное с повышением общей концентрации электролита, приводит к уменьшению толщины двойного слоя и увеличивает, следовательно, градиент поля при постоянной величине электродного потенциала. По-видимому, с этим обстоятельством связан подбор опытным путем в качестве модельного электролита для ускоренных испытаний стали на коррозионное растрескивание насыщенного раствора Mg la [58]. Увеличение концентрации водного раствора HjSO монотонно снижает время до разрушения закаленной стали (см. рис. 58), хотя концентрационная зависимость скорости общей коррозии имеет два максимума. Это явление можно объяснить адсорбционным эффектом Ребиндера и усилением избирательности коррозии, т. е. локализацией растворения под действием напряжений. При максимальных напряжениях ниже предела текучести скорость общей коррозии  [c.170]


Рафинирование металла шва заключается в освобождении его от вредных примесей, главным образом от серы и фосфора, которые попадают в ванну из основного металла, электродного стержня и покрытия, проволоки и флюса. Сера может остаться в шве в виде сульфида железа РеЗ, располагаясь между кристаллами стали. Это приводит к появлению горячих трещин в стали (см. 9.7). Фосфор, находясь в шве в виде фосфидов РезР и РезР, снижает его ударную вязкость, особенно при низкой температуре, поэтому удаление из шва серы и фосфора необходимо. Это осуществляется путем связывания серы и фосфора в химические соединения, не растворимые в стали и удаляемые в шлак, по реакциям  [c.121]

Как было отмечено выше, сероводородное растрескивание (СР) оборудования ОНГКМ инициируется концентраторами напряжений дефекты сварных соединений (см. рис. 2.1, е 2.2, а 2.6 2.7) и технологические дефекты основного металла, резьбы (рис. 2.8, б), следы от ключей, коррозионные язвы и т.п. Результаты лабораторных испытаний сварных образцов из стали 20 также свидетельствуют о зарождении СР от дефектов (см. рис. 2.7, а), которые более чем в 10 раз снижают долговечность сварных соединений. Сопротивление СР качественных сварных соединений не ниже, чем основного металла, кроме того, за 20 лет эксплуатации сварных конструкций в металле швов в отличие от основного проката не обнаружено ни одного случая водородного расслоения. Это объясняется применением электродных материалов с низким содержанием серы, отсутствием в шве текстуры, а также тем, что условия плавления и кристаллизации шва способствуют образованию мелких сульфидных включений глобулярной формы и равномерному их распределению по литому металлу шва. В прокате из стали типа сталь 20 оборудования ОНГКМ наблюдается, особенно в срединной части стенки конструкции, значительное количество сульфидных включений дискообразной формы длиной от долей до десятков миллиметров (рис. 2.7, д). На границах раздела сульфид - матрица при охлаждении после завершения кристаллизации возможно образование микрополостей, так как коэффициент термического расширения сульфидов Ге8 - Мп8 больше, чем у ферритной матрицы (1810 К против 11,810" К" ). Металл матрицы в зоне границы раздела фаз, являясь областью объемного растяжения кристаллической решетки, может выполнять роль коллекторов для водорода. Образующийся в результате контакта стали с сероводород со держащей средой водород, попадая в эти несплошности, молизуется, вызывая водородное растрескивание (ВР) металла. Трещины ВР зарождаются внутри металла на границах раздела матрица - включение и распространяются, как правило, межкристаллитно в направлении, параллельном его поверхности при взаимодействии этих тре-щин-расслоений возникает ступенчатая магистральная тре-  [c.70]

ЭШС проволочными электродами проводят одной или двумя электродными проволоками (см. рис. 11.8, а). Этим способом можно сваривать металл толщиной 30...ПО мм при использовании электрода диаметром 5 мм. Применение электродной проволоки больщего диаметра, чем при сварке сталей аналогичных толщин, вызвано прежде всего повыщенной электропроводимостью бескислородных гало-генидных флюсов и, как следствие, пониженным напряжением сварки, а также высоким удельным электросопротивлением титана, препятствующим применению режимов сварки с большими плотностями тока в электродах.  [c.141]

Кислый марганцовистый флюс АН-348А несколько более чувствителен к наличию серы и ржавчины в свариваемом металле и проволоке, чем флюс ОСЦ-45. С флюсом АН-348А можно сваривать малоуглеродистой электродной проволокой низколегированную сталь НЛ-2. Флюс АН-348А может быть двух видов стекловидный и пемзовидный. Стекловидный флюс темно-бурого цвета имеет насыпной вес 1,4—1,6 г/слг и используется для сварки стыковых и угловых швов со скоростью не более 60 м/час. Пемзовидный флюс светло-бурого цвета имеет насыпной вес 0,7—0,9 г/см и предназначен для сварки со скоростью до 150—200 м час и более.  [c.178]

Медь обладает высоким электродным потенциалом (см. табл. 1.19) и повышает коррозионную стойкость стали в восстановительных средах. Особенно эффективно одновременное легирование металла медью и молибденом. Аустенитная сталь 06Х23Н28МЗДЗТ вполне коррозионностойка в водных растворах 40%-ной серной кислоты при температурах до 70° С. Ее применяют в химическом машиностроении.  [c.66]

Увеличение скорости коррозии железа в пассивном состоянии при сохранении весьма положительного электродного потенциала (явление транспассивности) аналогично подобному же явлению для нержавеющих сталей (см. главу XIII) и объясняется возможностью образования при более высоких окислительно-восстановительных потенциалах среды более растворимых окислов щестивалентного железа (или хрома в случае нержавеющих сталей) [18, 19].  [c.452]

В качестве примера электрохимической гетерогенности сварного соединения на рис. 94 и 95 показано распределение локального электродного потенциала поперек сварного шва на поверхности пришовной зоны стали 1Х17Н2, сваренной встык электродом марки основного металла на минимальной и максимальной погонной энергии соответственно 1,76 кДж/см (420 кал/см) при движении электрода со скоростью 5 м/ч под током 90 А и 18,5 кДж/см (4400 кал/см) при 10 м/ч и 300 А.  [c.220]

Еще одна методика электрохимического испытания, получившего наименование ЕС-испытание, опубликована Сауером и Баско в 1966 г. Вероятно, это последнее из наиболее ускоренных коррозионных испытаний качества изделий с никель-хромовыми покрытиями, наносимыми либо на сталь, либо на цинковый сплав. Электродный потенциал испытуемых образцов поддерживался потенциостатически равным 0,3 В. Образец являлся анодом по отношению к каломельному электроду сравнения в растворе, содержащем нитрат и хлорид натрия, азотную кислоту и воду. Анодный ток подавался циклически 1 мин — подача тока 2 мин — отключение. Максимальная плотность тока не превышала 3,3 мА/см . На практике такое значение плотности тока является предельным для изделии, имеющих никель-хро-мовые покрытия.  [c.164]


Поскольку коррозионное растрескивание, так же как и питтинговая коррозия, является по своей природе электрохимическим процессом, развивающимся в результате депассивации части металлической поверхности, стойкость металла к данному виду разрушения определяется прежде всего стабильностью возникающей на нем пассивирующей пленки [152,15 3] и может регулироваться за счет регулирования электродного потенциала металла. В настоящее время хорошо известно, что наложение катодной поляризации затрудняет, а анодной - облегчает развитие коррозионного растрескивания. Так, например, катодная поляризация аустенитной нержавеющей стали в кипящем растворе Mg l2 током 3 10" а/см обеспечило защиту ее от растрескивания на протяжении всего опыта, длившегося 24 ч [154]. Показано также [ 155], что полную защиту стали 18/9 в кипящем 42%-ном растворе Mg l2 удается обеспечить катодной поляризацией ее током 1,5 10-4 а/см2.  [c.35]

Надежность электроимпульсных установок и эффективность процесса электроимпульсного разрушения во многом зависят от конструктивного исполнения заземленного электрода-классификатора. Расчетом механической прочности по результатам оценки динамических нагрузок (см. раздел 4.2) и изучением поведения электродных систем в длительных режимах работы электроимпульсных установок установлено, что толщина заземленных перфорированных электродов-классификаторов в рабочей зоне для 10" имп. должна составлять 8-9 мм. Увеличение толщины нецелесообразно, так как изготовление отверстий диаметром 1 мм и ниже представляет значительную сложность, если учесть, что в электроде-классификаторе может быть более 3-4 отв/см . Стоимость изготовления электродов-классификаторов, по данным опытного завода института Механобр , достигает 50% стоимости изготовления рабочей камеры. Поэтому целесообразно в электродах-классификаторах наиболее опасную область защищать сменным элементом, выполненным из эрозионностойкой стали, что на порядок увеличивает стойкость заземленного электрода-классификатора. С целью гашения ударных нагрузок электроды-классификаторы также могут быть снабжены специальными демпфирующими элементами.  [c.178]

Как показано выше (см. рис. 23, 27, 31 и 34), величина и характер изменения электродного потенциала в процессе коррозионной усталости железа, сталей, алюминиевых и титановых сплавов, а также изменение токов коррозии существенно зависят от амплитуды циклических напря- (ений и отражают определенным образом состояние приповерхностного слоя испытываемого объекта. Так как электрохимические характеристики металла чувствительны к состоянию его поверхности, электрохимический анализ можно эффективно использовать для изучения начальной стадии коррозионно-механического разрушения металлов.  [c.85]

Электрохимическими исследованиями, проведенными совместно с А.М.Крохмальным [208, с. 57—61], установлено рис. 100), что стационарный потенциал цинкового покрь Тия равен примерно -870 мВ, т.е. на 300-320 мВ отрицательнее стационарных потенциалов сталей. За 12 сут испытаний без приложения циклических напряжений (что соответствует базовому количеству циклов вращения 5 10 цикл) потенциалы оцинкованных образцов сдвигаются до — (780 — 800 мВ) вследствие формирования на поверхности плотного слоя оксидо-солевых продуктов коррозии, состоящих из оксидов и гидрооксида цинка. При высоких механических напряжениях происходит смещение электродных потенциалов стали на 80—100 мВ в отрицательную сторону от стационарного значения. Величина смещения потенциалов растет с уменьшением прочности стали и повышением уровня приложенного напряжения. Воздействие циклических напряжений в начале испытаний приводит к появлению в слое трещин, достигающих основного металла, что является причиной резкого смещения потенциала. На последующих этапах испытаний потенциалы образцов сдвигаются в положительную сторону на 30-50 мВ, а затем относительно стабилизируются (см. рис. 100, // участок кривой 3), что связано с пассивацией ювенильных поверхностей покрытия и контактированием коррозионной среды через трещины со сталью, имеющей более положительный потенциал, чем покрытие. Сдвиг потенци4ла в положительную область увеличивается с ростом уровня напряжений и понижением прочности стали, так как эти факторы усиливают разрушение покрытия, и площадь оголенной стали увеличивается. Потенциал образовавшейся коррозионной системы покрытие — основа лежит в достаточно отрицательной области (—900 мВ и ниже), поэтому поверхность стали находится в условиях полной электрохимической защиты в результате протекторного действия покрытия. Однако влияние высоких напряжений без коррозионного фактора приводит к развитию разрушения в глубь стали, что сопровождается интенсивным смещением потенциала в положительную сторону (/// участок). Полное разрушение образца сопровождается резким сдвигом потенциала в отрицательную сторону IV участок).  [c.186]

Магний — пластичный металл блестящего серебристо-белого цвета. Плотность литого магния 1,737 г/см и уплотненного 1,739 г/см . Температура плавления 65ГС, кипения — 1107° С. Скрытая теплота плавления 70 кал/г. Теплопроводность 0,376 кал/(см-с-°С). Удельная теплоемкость, кал/(г-°С 0,241 — при 0° С 0,248 — при 20° С 0,254 — при 100 С и 0,312 — при 650° С. Коэффициент линейного расширения 25 10 +0,0188 г° (в пределах О—550° С). Удельное электрическое сопротивление при 18° С 0,047 Ом/(мм /м). Стандартный электродный потенциал 2,34 В. Электрохимический эквивалент 0,454 г/(А-ч). Магний неустойчив против коррозии, образующаяся поверхностная окисная пленка не защищает массу металла. Магний горюч, порошок или тонкая лента из него сгорают в воздухе с ярким ослепительным пламенем. Используется в магние-термии, в качестве твердого топлива — в реактивной технике. При повышения температуры возможно самовоспламененпе магниевого порошка или стружки. Магний устойчив против щелочей, фтористых солей, плавиковой кислоты и т. д. Чистый магний в качестве конструкционного материала почти не ис-по.льзуется, но является основой эффективных магниевых сплавов. Применяется в производстве стали, высокопрочного (магниевого) чугуна, для катодной защиты стали.  [c.145]

Хотя в подавляющем большинстве случаев сварки плавлением аустенитных сталей и сплавов реакция углерода не получает заметного развития, знание ее особенностей необходимо для специалистов-сварщиков. Ниже будет показано, что углерод в известных условиях оказывает благоприятное влияние на стойкость аустенитных швов против образования горячих трещин. Поэтому в отдельных случаях может пойадобиться введение дополнительного количества углерода в металл шва. На практике в настоящее время для повышения содержания углерода в металле аустенитного шва используется следующее 1) введение углерода в шов через электродное покрытие, содержащее углеродистые ферросплавы 2) применение карбидных плавленых флюсов (см. гл. VI) 3) сварка в углекислом газе. При сварке в углекислом газе или в газовых смесях, содержащих СОа, возможно некоторое повышение содержания углерода в шве за счет протекания известной реакции  [c.72]

Исследования, проведенные в шестидесятых годах, показали, что структурная коррозия имеет прямую зависимость от электродного потенциала [35—37]. Это обстоятельство способствовало интенсификации разработок ускоренных методик определения склонности нержавеющих сталей к отдельным видам локальной коррозии, в частности, межкристаллитной. Установлено, что межкристаллитная коррозия (МКК) нержавеющих сталей наиболее интенсивно проявляется в переходной области потенциалов (участок резкого снижения анодной потенцио-статической кривой, так называемый падающий) Аф мкк (см. рис. 1.1) [35—37], а также в области перепасснвации Дф мкк  [c.17]


Тонкостенные основания электродных узлов АЭ выполняют функции мембран при удлинении разрядного канала. Во многих АЭ для повышения надежности канала применяли сильфоны из нержавеющей стали. Конструкция электродного узла с сильфоном аналогична применяемому в ГЛ-201 Д (см. рис. 3.14). Металлокерамическая вакуумноплотная оболочка 8 имеет внутренний диаметр 104 мм, что определяет внешний диаметр волокнистого теплоизолятора ВКВ-1 (см. рис. 3.20, 6). Радиус зоны разграничения теплоизолятора ВКВ-1 и теплоизолятора из полых микросфер марки Т (5) составляет 35 мм. Конструкции экранов-ловушек 9 и стеклянных концевых секций 10 с оптическими окнами 11 для вывода лазерного излучения аналогичны использующимся в АЭ ГЛ-201Д. Режим тренировки АЭ ГЛ-201Д32 идентичен режиму тренировки ГЛ-201Д и имеет такую же продолжительность — 50-60 ч (масса теплоизоляторов одинакова).  [c.102]


Смотреть страницы где упоминается термин Электродная сталь -см. Сталь электродная : [c.358]    [c.190]    [c.41]    [c.387]    [c.17]    [c.214]    [c.252]    [c.229]    [c.55]    [c.181]    [c.123]    [c.49]    [c.191]    [c.384]    [c.281]    [c.171]    [c.154]    [c.94]    [c.208]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Сталь электродная - Марки

Электродная проволока, электроды и флюсы для сварки сталей

Электродные проволоки для сварки нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте