Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварочная (электродная) проволока

К сварочным материалам относят покрытые плавящиеся электроды, сварочную электродную проволоку, неплавящиеся электроды, присадочные прутки, порошковые материалы, флюсы и защитные газы (инертные, активные и газовые смеси).  [c.57]

Присадочный (дополнительный) металл обычно требуется для получения шва с необходимыми геометрическими размерами, так как в большинстве случаев расплавление только кромок основного металла не обеспечивает получение выпуклости шва и заполнение зазора и разделки кромок (если она есть). Если дополнительный металл в процессе сварки расплавляется в виде сварочной (электродной) проволоки, стержней и т.д., включенных в сварочную цепь, он обычно называется электродным, а если он не включен в сварочную цепь, - присадочным.  [c.22]


Сварочная электродная проволока. поставляется в бухтах (мотках). На ее поверхности не должно быть ржавчины, масла и других загрязнений, наличие которых является одной из причин образования пор и снижения стабильности горения дуги. Наличие ржавчины на поверхности проволоки ухудшает также работу сварочного оборудования засоряются и быстро выходят из строя шланги, нарушается нормальная работа подающих роликов. На очистку проволоки и намотку ее в кассеты вручную приходится затрачивать много времени. Эти операции особенно трудоемки при использовании тонкой проволоки диаметром 1,6—2 мм, подаваемой в зону дуги с большой скоростью (200—300 м1ч). Длина электродной проволоки в кассете сварочного аппарата составляет всего около 200 ж и за смену приходится перезаряжать 8—10 кассет, затрачивая на это каждый раз не меньше 20 мин. Поэтому в последнее время начали 322  [c.322]

Сварка в углекислом газе. Чтобы предохранить поверхности заготовок от брызг электродного металла, их покрывают водным раствором мела или каолина. При выборе сварочных электродных проволок (табл. 15.11) учитывают выгорание титана, марганца и кремния. Ориентировочные режимы сварки указаны в табл. 15.12.  [c.266]

В качестве плавящегося электрода используют сварочную (электродную) проволоку круглого сечения, порошковую проволоку, электродную ленту и специальные электроды более сложной формы. Питание дуги осуществляется от источника переменного или постоянного тока при прямой либо обратной полярности. В некоторых случаях (например, при сварке на больших скоростях несколькими дугами) применяют комбинированное питание от источников постоянного и переменного тока.  [c.15]

Сварочная (электродная) проволока  [c.74]

Для зубопротезирования Электроды для свечей зажигания Сварочная электродная проволока  [c.305]

По указанной причине все упомянутые стандарты, регламентирующие конструктивные элементы разделки кромок, учитывают возможность варьирования силой сварочного тока, напряжением, диаметром электродной проволоки (плотностью тока) и скоростью сварки. В тех случаях, когда процесс сварки обеспечивает использование больших токов, высокой плотности тока и концентрации теплоты, возможны повышенная величина притупления, меньшие углы разделки и величина зазора (например, при механизированной сварке под флюсом и в защитных газах).  [c.13]

Необходимое условие сварки — поддержание дуги. Для этого скорость подачи электрода должна соответствовать скорости его плавления теплотой дуги. С увеличением силы сварочного тока скорость подачи электрода должна увеличиваться (рис. 27). Электродные проволоки меньшего диаметра при равной сило  [c.34]


Для автоматической дуговой сварки под флюсом используют непокрытую электродную проволоку и флюс для защиты дуги и сварочной ванны от воздуха. Подача и перемещение электродной проволоки механизированы. Автоматизированы процессы зажигания дуги и заварки кратера в конце шва.  [c.193]

При электрошлаковой сварке основной и электродный металлы расплавляются теплотой, выделяющейся при прохождении электрического тока через шлаковую ванну. Процесс электрошлаковой сварки (рис. 5.13) начинается с образования шлаковой ванны 3 в пространстве между кромками основного металла 6 и формирующими устройствами (ползунами) 7, охлаждаемыми водой, подаваемой по трубам I, путем расплавления флюса электрической дугой, возбуждаемой между сварочной проволокой 4 и вводной планкой 9. После накопления определенного количества жидкого шлака дуга шунтируется шлаком и гаснет, а подача проволоки и подвод тока продолжаются. При прохождении тока через расплавленный шлак, являющийся электропроводящим электролитом, в нем выделяется теплота, достаточная для поддержания высокой температуру шлака (до 2000 °С) и расплавления кромок основного металла и электродной проволоки. Проволока вводится в зазор и подается в шлаковую ванну с помощью мундштука 5. Проволока служит для подвода тока и пополнения сварочной ванны 2 расплавленным металлом. Как  [c.200]

Основными параметрами режима электрошлаковой сварки проволочным электродом являются следующие величины диаметр электродной проволоки (обычно принимается равным 3 мм), сила сварочного тока, скорость подачи электрода, напряжение на шлаковой ванне, скорость сварки, толщина свариваемого металла, скорость поперечных перемещений электрода, время выдержки у ползуна при сварке с поперечными колебаниями, величина недохода при сварке несколькими проволоками, количество сварочных проволок (электродов), величина зазора, марка флюса, глубина шлаковой ванны, недоход электрода до ползуна. Все эти параметры существенно влияют на качество и формообразование сварного шва и должны правильно подбираться.  [c.52]

Кроме того, сила тока в сварочной цепи зависит от скорости подачи электродной проволоки и связана с ней линейной зависимостью  [c.53]

Качественный сварной шов при сварке плавлением невозможно получить только расплавляя кромки свариваемого металла источником на-фева. При любом способе сварки плавлением необходимо применение сварочных материалов. К сварочным материалам относят сварочную электродную проволоку, электроды плавящиеся покрытые, электроды непла-вящиеся, присадочные прутки, флюсы, защитные газы (инертные, активные, горючие, газовые смеси), порошковые присадочные материалы и др.  [c.22]

Сущность способа. Наиболее широко распространен процесс при использовании одного электрода — однод говая сварка. Сварочная дуга горит между голой электродной проволокой I и изделием, находящимся под слоем флюса 3 (рис. 25). В расплавленном флюсе 5 газами и парами флюса и расплавленного металла образуется полость — газовый пузырь 4, в котором существует сварочная дуга. Давление газов в газовом пузыре составляет 7—  [c.32]

Влияние параметров режима сварки на форму и размеры шва. Форма и размеры шва зависят от многих параметров режима сварки величины сварочного тока, напряжения дуги, диаметра электродной проволоки, скорости сварки и др. Такие параметры, как наклон электрода или изделия, величина вылета электрода, грануляция флюса, род тока и нол)1рность и т. п. оказывают меньп1ее влияние на форму и размеры шва.  [c.34]

Процесс сварки иач1и1ается обычным способом. В конце шва неремощение дор кателя задерживается для заварки кратера, а затем быстрым движением нерсмеп ается на начало следующего шва без выключения сварочного тока и нодачи электродной проволоки. Наиболее удобно этим способом сваривать угловые швы в тавровых соединениях.  [c.43]


Для улучшения технологических свойств дуги применяют периодическое изменение ее мгновенной мощности — импульсно-дуговая сварка (рис. 48). Теплота, выделяемая основной дугой, недостаточна для плавления электродной проволоки со скоростью, равной скорости ее подачи. Вследствие этого длина дугового промежутка уменьшается. Под действием импульса тока происходит ускоренное раснлавлепиэ электрода, обеспечивающее формирование капли на его конпе. Резкое увеличение электродинамических сил сужает шейку канли и сбрасывает ее в направлении сварочной ванны в любом пространственном по-ло5кении.  [c.56]

Экономичность способа определяется уменьшением числа проходов в шве за счет отсутствия разделки кромок. Повышение производительности достигается также новыптением скорости расплавления электродной проволоки с увеличенным вылетом. Нагрев электрода в вылете протекающим по нему сварочным током обеспечивает повышение коэффициента расплавления. Однако при этом уменьшается глубина ироилавления, поэтому способ целесообразно применять для сварки швов, требующих большого количества наилавлеппого металла.  [c.58]

При сварке плавящимся электродом в защитных газах зависимости формы и размеров шва от основных пара.метров режима такие же, как и при сварке под флюсом (см. рис. 28). Для сварки используют электродные проволоки малого диаметра (до. 3 мм). Поэтому швы имеют узкую форму провара и в них может наблюдаться повышенная зональная ликвация (см. рис. 2У). Применяя ионерочиые колебания электрода (с м. рис. 30, а), изменяют форму шва и условия кристаллизации металла сварочной вапны и уменьшают вероятность зональной ликвации. Плюется опыт примопе-ния для сварки в углекислом га ю электродных проволок диаметром 3—5 мм. Сила сварочного тока в этом случае достигает 2000 А, что значительно повыша( т производительность сварки. Однако при подобных форсированных режимах наблюдается ухудшенное формирование стыковых швов и образование в иих подрезов. Формирование и качество угловых швов вполне удовлетворительны.  [c.58]

Наибольшее распространение из всех аппаратов для автоматической сварки получили сварочные тракторы, т, е. такие аппараты, которые могут перемещаться по изделию. Тракторы типа ТС подают электродную проволоку с постоянной скоростью, рассчитаны па поддержание горения дуги в режиме саморегулирования. Тракторы типа АДС снабжены автоматическим регулятором папряже- ия дуги с во.эдействием на скорость подачи электрода, обладают возможностью плавно изменять скорость сварки. Это обеспечивает легкое регулирование и изменение режимов сварки в широких пределах. Тракторы типа ТС проще по конструкции (табл. 29).  [c.146]

Направленность кристаллизации зависит от коэффициента формы шва. При его увеличении за счет уменьшения скорости подачи электродной проволоки (рис. 110, б) происходит отклонение роста кристаллов в сторону теплового центра сварочной ванны. Подобные швы имеют повышенную стойкость против кристаллизационных трещин. Медленное охлаждение швов при электрошлаковой сварке в интервале температур фазовых превращений способствует тому, что их структура характеризуется грубым ферритпо-нерлитным строением с утолщенной оторочкой феррита по границам кристаллов.  [c.213]

Сварка плавящимся электродом в углекислом газе хотя и обеспечивает обычно достаточное оттеснение воздуха от сварочной зоны, однако оказывает значительное окислительное воздействие на металл. Для борьбы с недопустимым окислением металла шва в электродную проволоку необходимо вводить специальные рас-кислители в количествах, достаточных для предохранения от вы1 ораиия основных элементов, определяющих свойства металла шва. Принципиально возможна и разработка порошковых проволок для сварки рассматриваемых сталей.  [c.265]

Механические свойства сварных соединений, сваренных приведенными выше сварочными материалами, кроме ударной вязкости в зоне термического влияния, соответствуют свойствам основного металла. Швы, выполненные автоматической сваркой под флюсом электродной проволокой марки Св-13Х25Н18 (а также и при ручной дуговой сварке электродами на этой проволоке, например марки ЦЛ-8), оказываются склонными к межкристал-литной коррозии, определяемой, видимо, повышенным содержанием углерода и отсутствием стабилизируюш,их элементов.  [c.277]

Получить в наплавленном металле и металле шва серый чугун можно, применяя специальные сварочные материалы, которые обеспечивают легирование через электродное покрытие. Примером таких м.1те1)иалов могут служить электроды, стержень которых изготовлен из низкоуглеродистой проволоки, например, марок Св-08 нлы Св-08Л по ГОСТ 2246—70, а в легирующем покрытии содержится достаточное количество элементов графитизаторов — угле )ода и кремния. Наиболее характерны электроды марки ЭМЧС, стержень которых состоит из низкоуглеродистой электродной проволоки, а покрытие из трех слоев  [c.332]

Повышенное качество сварных швов обусловлено получением более высоких механических свойств наплавленного металла благодаря надежной защите сварочной ванны флюсом, интенсивному раскислению и лепгрованпю вследствие увеличения объема жидкого шлака, сравнительно медленного охлаждения шва под флюсом и твердой шлаковой коркой улучшением формы и поверхности сварного шва и постоянством его размеров по всей длине вследствие регулирования режима сварки, мехаиизированной подачи и перемещения электродной проволоки.  [c.194]

Диаметр стержней, мм Скорость подачи электродной проволоки, м/мин Сила сварочного тока, А Напря- жение на электроде, В Сухой вылет электрода, мм Глубина шлаковой в а н li ы, мм Зяэор между стерж н я ми, мм  [c.59]


Смотреть страницы где упоминается термин Сварочная (электродная) проволока : [c.72]    [c.305]    [c.305]    [c.264]    [c.20]    [c.25]    [c.33]    [c.35]    [c.45]    [c.55]    [c.55]    [c.56]    [c.60]    [c.84]    [c.142]    [c.153]    [c.253]    [c.274]    [c.287]    [c.303]    [c.228]   
Смотреть главы в:

Сварочное дело в строительстве Издание 2  -> Сварочная (электродная) проволока



ПОИСК



Проволока сварочная

Сварочная проволока электродная стальная См. Проволока электродная

Электродная проволока —



© 2025 Mash-xxl.info Реклама на сайте