Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент вектора относительно точки плоскости

Моментом силы относительно точки (центра) О называется вектор, численно равный произведению модуля силы на плечо (расстояние от центра до линии действия силы) н направленный перпендикулярно плоскости, проходящей через точку О и линию действия силы в ту сторону, откуда сила видна направленной относительно точки О против хода часовой стрелки. Если точка приложения силы F определяется радиусом-вектором г относительно точки О, то Мо Р) = гХ , т. е. момент силы равен векторному произведению вектора г на вектор Х. Проекция в тора момента силы Мо (Р) на ось называется моментом силы Г относительно оси. Момент равнодействующей силы относительно оси равен алгебраической сумме моментов сил данной системы сил относительно этой оси.  [c.50]


Выражение момента силы относительно точки в виде вектора вполне соответствует физической сущности этого понятия, и если силы расположены в различных плоскостях, то моменты сил относительно точки складывают по правилу параллелограмма. Только при рассмотрении системы сил, расположенных в одной плоскости, можно игнорировать направление вектора момента, а учитывать его величину и знак, т. е. определять момент по формулам (14), (15) или (16). В такой системе, когда все силы и центр моментов расположены в одной плоскости, векторы моментов различных сил относительно какой-либо точки О направлены от точки О перпендикулярно к этой плоскости в ту или другую сторону, и в этом случае их складывают алгебраически.  [c.59]

Выражение момента силы относительно точки в виде вектора вполне соответствует физической сущности этого понятия, и если силы расположены в различных плоскостях, то моменты сил относительно точки складывают по правилу параллелограмма. Только при рассмотрении системы сил, расположенных в одной плоскости, можно игнорировать направление вектора момента, а учитывать его знак, т. е. определять момент по формулам (96), (97) и (98).  [c.139]

Момент пары, подобно моменту силы относительно точки,— векторная величина. Вектор момента пары перпендикулярен плоскости пары. Но у всякой плоскости имеется две стороны. Условились вектор момента восставлять с той стороны, с которой пара представляется поворачивающей свое плечо против хода часовой стрелки (рис. 83, а). Таким образом, вектор момента пары сил характеризует не только величину воздействия пары на тело, но и плоскость пары, а также и направление, в котором силы пары стремятся повернуть тело.  [c.149]

Словами это равенство можно прочитать так момент равнодействующей системы сходящихся сил относительно какой-либо точки равен сумме моментов всех сил относительно той же точки. Момент силы относительно точки есть вектор, поэтому сумма является геометрической. В частном случае, если все силы и центр моментов лежат в одной плоскости, то все векторы моментов направлены по  [c.232]

Чтобы найти момент силы относительно оси, надо провести произвольную плоскость, перпендикулярную к оси, спроектировать вектор силы на эту плоскость и найти момент, проекции силы, рассматривая се как вектор, относительно точки пересечения плоскости с осью.  [c.264]

Установим зависимость между моментом силы относительно точки и моментом силы относительно оси. Для этого момент силы Р относительно точки О, обозначенный Шо(Р) (рис. 83), отложим в виде вектора, направленного перпендикулярно к плоскости ОАВ. Затем через точку О проведем какую-либо ось, определим момент силы относительно этой оси и отложим на оси отрезок ОК, соответствующий в принятом масштабе моменту относительно оси.  [c.68]


Направление плоскости в пространстве, как известно, может быть задано перпендикуляром к этой плоскости. Чтобы одновременно определить величину момента силы относительно точки и направление плоскости, проходящей через линию действия силы и центр момента, естественно рассматривать момент силы то(Р) относительно точки О (рис. 26) как вектор, приложенный в этой точке, равный по абсолютной величине произведению величины силы Р на кратчайшее расстояние к линии действия силы от центра момента, т. е. плечо, и направленный по перпендикуляру к плоскости, содержащей линию действия  [c.36]

Интегралами будут также величина вектора кинетического момента шара относительно точки D касания его с плоскостью  [c.273]

Моментом силы относительно точки О называется вектор 1о с началом в этой точке, равный по величине произведению модуля силы Р на плечо к и направленный перпендикулярно плоскости, проходящей через точку О и линию действия силы, в ту сторону, откуда поворот этой плоскости под действием силы наблюдался бы в направлении движения часовой стрелки (рис. 1.38).  [c.42]

Приложение к солнечной системе. Неизменяемая плоскость Лапласа. Если пренебречь действием звезд, то система, образованная Солнцем, планетами и их спутниками, не подвергается действию никаких внешних сил. Следовательно, если взять оси с постоянными направлениями, проведенными из центра тяжести О системы, который расположен весьма близко к Солнцу, то главный момент Оа относительно точки О количеств движений, вычисленных по отношению к этим осям, является постоянным по величине и направлению. Можно вычислить для какого-нибудь момента времени проекции А, В, С этого вектора на оси, подсчитав суммы моментов количеств движения относительно этих осей всех тел системы.  [c.59]

Моменты относительно плоскости. — Рассмотрим систему параллельных векторов, положительных и отрицательных, соответственно тому, направлены они в одну или другую сторону. Моментом вектора относительно плоскости называется произведение алгебраической величины вектора на расстояние от его точки приложения до плоскости при этом расстояние считается положительным с одной стороны плоскости и отрицательным — с другой.  [c.35]

Если результирующая системы параллельных векторов (предполагаемая отличной от нуля) приложена в центре параллельных векторов, то момент ее относительно какой-нибудь плоскости равен сумме моментов составляющих относительно той же плоскости.  [c.35]

Приведение винта к точке О, не лежащей на его оси I (параллельный перенос, рис. И). Известно, что свободный вектор переносится в любую точку параллельно самому себе свободно. Однако при переносе скользящего вектора Сц в точку О необходимо дополнить его моментом главного вектора относительно точки О или векторным произведением х Гд [91 ]. Этот дополнительный вектор перпендикулярен плоскости, вмещающей прямую / и точку О, и представляет собой свободный вектор (например, вектор линейной скорости). Поэтому необходимо его геометрически сложить с вектором Oj. Таким образом, при параллельном переносе винта получим бивектор  [c.66]

В случае сил, лежащих в различных непараллельных плоскостях, правило знаков теряет свой смысл, и моменты силы относительно точки, как и моменты пар, рассматриваются как векторы.  [c.72]

С понятием момента силы относительно точки мы уже встречались выше (см. гл. V, 21), но при решении пространственных задач статики этот момент полезно изображать в виде вектора, перпендикулярного плоскости треугольника, основанием которого служит сила, а вершиной—точка, относительно которой берется момент (рис. 108, а, 6).  [c.89]

Таким образом, изобразив вектором момент силы относительно точки, мы кроме его численной величины, выражаемой равенством (47), определяем направление поворота плоскости Д ОАВ, в которой действует сила Р. Поэтому, когда момент силы относительно точки изобра-  [c.90]

II. Математические характеристики силы и системы сил. Проекции силы на ось и на плоскость. Вектор-момент силы относительно точки. Момент силы относительно оси и его связь с вектором-моментом силы относительно точки. Главный вектор системы сил. Графический и аналитический способы его вычисления. Главный момент системы сил относительно точки. Аналитический способ его вычисления.  [c.101]


Аналогично, моментом силы относительно точки будем называть алгебраическую величину, равную проекции вектора момента силы относительно этой точки на ось, перпендикулярную плоскости, т. е. равную произведению модуля силы на плечо, взятому с соответствующим знаком. Для случаев, изображенных на рис. 5.3, а и б, соответственно будет  [c.66]

Момент силы относительно точки. Если к телу приложена сила Р, изображаемая вектором АВ, и дана какая-нибудь точка О (фиг. 8), то момент этой силы относительно точки О, подобно моменту пары, изображается в виде вектора. Этот вектор приложен в точке О и направлен по перпендикуляру к плоскости треугольника ОАВ в т.у сторону, чтобы наблюдатель, смотрящий с конца этого вектора на этот треугольник, видел силу Р направленной против часовой стрелки относительно точки О. Величина (модуль) этого вектора равна произведению  [c.360]

Векторным моментом силы относительно точки называют вектор, приложенный в этой точке и равный по модулю произведению силы на плечо силы относителыю этой точки. Векторный момент силы направлен перпендикулярно плоскости, в которой лежат сила и моментная точка, таким образом, что с его конца можно видеть стремление силы вращать тело против движения часовой стрелки (рис. 20).  [c.25]

Рассуждая аналогично, можно последовательно привести к точке силы пространственной системы. Но теперь главный вектор есть замыкающий вектор пространственного (а не плоского) силового многоугольника главный момент уже нельзя получить а.дгебраиче-ским сложением моментов данных сил относительно точки приведения. При приведении к точке пространственной системы сил присоединенные пары действуют в различных плоскостях и их моменты целесообразно представлять в виде векторов и складывать геоме-трнческн. Поэтому полученные в результате приведения пространственной системы сил главный вектор (геометрическая сумма сил системы) и главный момент (геометрическая сумма моментов сил относительно точки приведения), вообще говоря, не перпендикулярны друг другу.  [c.63]

ЭТОГО понятия уже входило задание положения в пространстве плоскости, проходящей через линию действия силы и выбранную в пространстве точку. Положение плоскости в пространстве, как известно, можно задать направлением перпендикуляра к этой плоскости. Таким образом, в определение момента силы относительно точки должны входить как модуль момента, так и указание направления перпендикуляра к плоскости, проходящей через линию действия силы и через выбранную точку. Отсюда вытекает следующее векторное определение момента силы Р относительно точки О (рис. 112) моментом силы Р относительно точки О называется вектор, приложенный в точке О, равный по модулю произведению модуля силы на ее плечо и направленный по перпендикуляру к плоскости ОАВ, проходящей через линию действия силы Р и точку О, в ту сторону, откуда вращние тела силой представляется происходящим против часовой стрелки.  [c.157]

Действие пары сил на тело аналогич1-ю действию силы на тело, имеющее неподвижную точку. Здесь мы имеем те же три характеристики величину момента пары сил плоскость действия пары сил и направление вращения тела под действием пары. Поэтому по аналогии с вектором-моментом силы относительно точки в теории статики вводится понятие о векторе-моменте пары сил. Мы его будем обозначать символом М. Этот вектор ( рис 1.8 и плакат 7с) у перпендикулярен плоскости действия пары сил-  [c.16]

Необходимость последнего вывода связана с тем, что при решении задач большей частью имеют дело.с парами сил, расположенными в одной плоскости. Показывать векторы-моменты этих пар перпендикулярными плоскости их действия совервенно нецелесообразно. Поэтому моменты пар, как и моменты сил относительно точек при решении задач на плоскую систему сил, считают в этом случае алгебраическими величинами и с тем же правилом знаков в зависимости от направления вращения тела под действием пары. Только знак моманта силы относительно точки зависит от выбора моментной точки, а знак момента пары сил - не зависит ( вспомните первую теорему о парах ). В заключение остается сказать, что условные изображения пар сил ( см.плакат 7с) на чертежах к задачам могут быть разными. Обычно на чертеже к задаче круговой стрелкой задается направление вращения пары, а в данных к задаче указывается величина крутящего момента пары сил.  [c.19]

В теоретической механике широко применяют также понятие вектйрного момента силы относительно точки. Напомним из математики определение и основные свойства векторного произведения двух векторов. Векторным произведением двух векторов а и В называют вектор с, модуль которого численно равен площади параллелограмма, построенного на векторах а и В, перпендикулярный к плоскости этого параллелограмма и направленный так, чтобы кратчайший поворот от а к В вокруг полученного вектора с был виден против часовой стрелки, если смотреть из конца вектора с (рис. 14,а). Условное обозначение с = = (ах В). Плошадь параллелограмма равна удвоенной площади треугольника (заштрихованного).  [c.23]

Аналитические выражения моментов вектора относительно осей координат. Пусть дан вектор Ру с началом в точке Ау и с концом в точке Ву (рис. 1). Обозначим через Ху, Уу, Zy координаты его точки приложения Ау и через Ху, Kj, Zy его проекции на оси Ох, Оу, Oz. Момент Ny вектора относительно оси Oz равен удвоенной площади проекции треугольника ОАуВу на плоскость хОу, причем этой величине площади приписывается знак согласно установленному ранее правилу. Но одна из вершин проекции совпадает с точкой О, а две другие имеют в плоскости хОу координаты  [c.24]


Но при равновесии на каждый элементарный слой, помимо активных сил с результирующей силой Fds и результирующим моментом (относительно F)Mds, действуют силы, приложенные к площадкам о и о и происходящие от соприкосновения со смежными слоями, если рассматриваемый слой не является одним из двух крайних слоев в этом последнем случае площадка oj или од подвергается соответственно действию Fa, ЛГа или Fb, Mb-Чтобы точнее описать силы, происходящие от соприкосновения с соседними элементами, рассмотрим любое нормальное (промежуточное) сечение о, При равновесии благодаря действию заданных активных сил в сечении о возбуждаются внутренние молекулярные силы, с которыми часть РВ тела, или, точнее, ее материальные элементы, непосредственно прилегающие к о, действуют на отдельные поверхностные элементы о. Сила, приложенная таким образо.м к произвольному элементу поверхности а, представляет собой бесконечно малую величину одного и того же порядка с элементо.м поверхности поверхностная сила). Интегрируя по всей конечной площадке а, мы получим для усилий, действующих на площадку о со стороны части РВ тела S, некоторую результирующую силу Ф и некоторый результирующий момент Г относительно точки Р, представляющие собой конечные функции дуги s. Векторы Ф и Г называются соответственно результирующим усилием и результирующим моментом усилий в точке Р составляющая усилия Ф, касательная к направляющей (и, следовательно, нормальная к площадке о), и составляющая, расположенная в плоскости о, соответственно называются нормальным усилием и перерезывающим усилием аналогичные составляющие результирующегд момента усилий Г называются крутящим моментом и изгибающим моментом.  [c.226]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]

На фиг. 115 указано разложение бивектора РМ на три пространственных вектора Р , Pg. Для первого вектора задан след а его линии действия, а для второго след Ь и точка Е (е), через которую вектор Рз должен пройти. Третий вектор задан направлением Рз (Яз) и следом с. Строим положения орт следов Z, т, ифокаль [х главного момента. Для определения направления векторов Pj и Ра главный вектор Р располагаем в точке а и по аппликате Z определяем величину момента q[j.I = Zh вектора относительно точки приведения О. Фокаль [ii пройдет через след Z главного вектора параллельно плечу h . Точка F пересечения фокалей [г и Ц. определяет плоскость моментов М = Mi М23 и М23 = М — моменты векторов Р и Рд относительно точки а Фокаль fi23 пройдет через фокус F перпендикулярно к направле  [c.225]

Момент силы относительно точки. Таким образом, из учения о равновесии рычага вытекла необходимость наряду с силами рассматривать ещё произведения величин сил на плечи. Несколько обобщая изложенное, рассмотрим силу Г и произвольную точку О пространства опустим из точки О перпендикуляр на прямую действия силы Р, и пусть будет й длина этого перпендикуляра. Мы условимся рассматривать произведения Рй, принимая их за модули некоторых векторов. Чтобы выяснить возможность последнего, необходимо показать, что, во-первых, произведения Рй можно рассматривать как величины некоторых количеств, имеющих направления в пространстве, и, во-вторых, что эти количества можно геометрически складывать. Чтобы убедиться в первом, вернёмся снова к рычагу и обратимся, например, к черт. 18. Так как сила Р стремится производить вращение вокруг точки О против часовой стрелки, а сила Q — по часовой стрелке, то согласно условию, выраженному в конце 4, для силы Р положительное направление оси вращения будет итти перпендикулярно к плоскости чертежа к лицу читателя, а для силы Q — от читателя. Условимся откладывать в положительном направлении на оси вращения отрезок, символически изображающий в каком-либо масштабе произведение Рй. Таким образом, мы будем получать отрезки, символически изображающие пО своей длине произведения Рй и имеющие определённые направления в пространстве. Чтобы убедиться, что эти отрезки суть векторы, остаётся показать, что эти отрезки можно геометрически складывать. Для этого рассмотрим какую-нибудь точку О и ряд сил Р , Р у Р у. .., которые могут и не лежать в одной плоскости. Построим для этих сил вышеуказанным приёмом отрезки с длинами Р с1 ,  [c.40]

Для плоской системы сил векторы момевтов всех сил направлены перпендикулярно плоскости, в которой лежат силы, если моменты рассматриваются относительно точки, лежащей в этой плоскости. Модуль момента силы рассчитывается как произведение модуля силы на плечо силы й— кратчайшее расстояние от линии действия силы до оси вращения  [c.29]

Аналогично, моментом силы относительно точки будем называт алгебраическую величину, равную проекции вектора момента силы от носительно той точки на ось, перпендикулярную плоскости, т. е.  [c.58]


Смотреть страницы где упоминается термин Момент вектора относительно точки плоскости : [c.56]    [c.53]    [c.26]    [c.37]    [c.75]    [c.21]    [c.22]    [c.75]    [c.96]    [c.36]    [c.58]    [c.31]    [c.119]   
Теоретическая механика (1970) -- [ c.267 ]



ПОИСК



Вектор относительного

Вектор точку

Момент вектора

Момент вектора относительно оси

Момент вектора относительно оси относительно оси

Момент вектора относительно оси точки

Момент вектора относительно плоскости

Момент вектора относительно точки относительно оси

Момент вектора относительно точки точки

Момент векторов относительный

Момент относительно оси

Момент относительно плоскости

Момент относительно точки

Плоскость и точка



© 2025 Mash-xxl.info Реклама на сайте