Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент вектора относительно плоскости

Моменты относительно плоскости. — Рассмотрим систему параллельных векторов, положительных и отрицательных, соответственно тому, направлены они в одну или другую сторону. Моментом вектора относительно плоскости называется произведение алгебраической величины вектора на расстояние от его точки приложения до плоскости при этом расстояние считается положительным с одной стороны плоскости и отрицательным — с другой.  [c.35]

Вместе с тем сумма моментов векторов относительно плоскости ZX равна нулю при любом угле поворота вала, следовательно, равен нулю и момент от сил инерции 2-го порядка.  [c.50]


Пусть плоскость Ре имеет нормаль е и проходит через полюс О. Моментом инерции относительно плоскости Те множества точечных масс т, с радиусами-векторами г, называется величина  [c.61]

Моменты параллельных связанных векторов относительно плоскости. Формулы для координат I, t , С центра параллельных связанных векторов, если их перевести на язык геометрии, приводят к теореме моментов относительно плоскости.  [c.47]

Если для системы параллельных связанных векторов существует результирующий вектор, то момент результирующего вектора относительно плоскости равен алгебраической сумме моментов составляющих векторов при условии, что этот результирующий вектор приложен в центре параллельных векторов.  [c.47]

Моментом силы относительно оси называют алгебраический момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью (рис. 22). Момент силы относительно оси считается положительным, если проекция силы на плоскость, перпендикулярную оси (проекция силы на плоскость является вектором), стремится вращать тело вокруг положительного направления оси против часовой стрелки, и отрицательным, если она стремится вращать тело по часовой стрелке. Момент силы, например, относительно оси Oz обозначим M (F). По определению, Рис. 22  [c.27]

В 8 было введено понятие о моменте силы относительно центра О. Эго вектор гП(у Р), направленный перпендикулярно плоскости ОАВ (рис. 85), модуль которого согласно формуле (13) имеет значение  [c.72]

Пусть конструкция звеньев механизма такова, что они симметричны относительно плоскости чертежа, что свойственно механизмам очень многих машин. Тогда главные векторы и главные моменты (результирующие пары) сил инерции всех звеньев будут располагаться в этой плоскости.  [c.202]

Для равновесия плоской системы сил, приложенных к твердому телу и не пересекающихся в одной точке, необходимо и достаточно, чтобы главный вектор R этих сил и их главный момент Mq относительно произвольной точки О, лежащей в плоскости действия этих сил, были равны нулю, т. е.  [c.48]

При изучении системы сил в пространстве момент силы f относительно точки О изображается вектором, приложенным в точ О, перпендикулярным к плоскости я, в которой лежат сила F и точка О, и направленным так, чтобы наблюдатель, смотрящий с конца этого вектора на плоскость я, видел силу F направленной по отношению к точке О против часовой стрелки.  [c.84]


Несколько труднее вычислить момент силы Т относительно оси у, так как сила Т не лежит в плоскости, перпендикулярной к этой оси. Поэтому предварительно спроектируем силу Т на плоскость, проходящую через точку М, перпендикулярно к оси у. Проекцией является сила Т1 (напомним, что проекция вектора на плоскость — также вектор). Из точки О пересечения этой плоскости с осью у опускаем перпендикуляр ОМ на линию действия силы Г . Так как с конца оси у видно, что сила Ту стремится повернуть тело вокруг точки О против часовой стрелки, то момент силы Т относительно оси у положителен, т. е.  [c.175]

Момент силы относительно центра. Пусть даны сила F, приложенная в точке А какого-либо тела, и некоторый центр О (рис. 226) тогда моментом силы относительно центра (или точки) О будет называться вектор, приложенный к центру О, направленный перпендикулярно к плоскости треугольника ОАВ по правилу правого  [c.224]

Моментом силы относительно точки (центра) О называется вектор, численно равный произведению модуля силы на плечо (расстояние от центра до линии действия силы) н направленный перпендикулярно плоскости, проходящей через точку О и линию действия силы в ту сторону, откуда сила видна направленной относительно точки О против хода часовой стрелки. Если точка приложения силы F определяется радиусом-вектором г относительно точки О, то Мо Р) = гХ , т. е. момент силы равен векторному произведению вектора г на вектор Х. Проекция в тора момента силы Мо (Р) на ось называется моментом силы Г относительно оси. Момент равнодействующей силы относительно оси равен алгебраической сумме моментов сил данной системы сил относительно этой оси.  [c.50]

Выражение момента силы относительно точки в виде вектора вполне соответствует физической сущности этого понятия, и если силы расположены в различных плоскостях, то моменты сил относительно точки складывают по правилу параллелограмма. Только при рассмотрении системы сил, расположенных в одной плоскости, можно игнорировать направление вектора момента, а учитывать его величину и знак, т. е. определять момент по формулам (14), (15) или (16). В такой системе, когда все силы и центр моментов расположены в одной плоскости, векторы моментов различных сил относительно какой-либо точки О направлены от точки О перпендикулярно к этой плоскости в ту или другую сторону, и в этом случае их складывают алгебраически.  [c.59]

В самом деле, в этом случае линия действия главного вектора (если он не равен нулю) параллельна линиям действия всех сил и для его определения достаточно взять сумму проекций всех сил на ось, параллельную их линиям действия. Если сумма проекций всех сил равна нулю, то и главный вектор равен нулю. Если же, кроме того, равен нулю и главный момент, то система находится в равновесии. Справедливо и обратное заключение если система параллельных сил, расположенных на плоскости, находится s равновесии, то равняются нулю сумма проекций сил на любую ось и сумма моментов сил относительной любой точки плоскости  [c.84]

Таким образом, если сумма моментов относительно точки О всех внешних сил постоянно равняется нулю, то вектор кинетического момента системы относительно этой точки О остается постоянным во все время движения. Так как вектор L .o сохраняет свое направление в пространстве, то плоскость, перпендикулярная вектору 1гл.о. также остается неизменной. Поясним это примером.  [c.329]

Выражение момента силы относительно точки в виде вектора вполне соответствует физической сущности этого понятия, и если силы расположены в различных плоскостях, то моменты сил относительно точки складывают по правилу параллелограмма. Только при рассмотрении системы сил, расположенных в одной плоскости, можно игнорировать направление вектора момента, а учитывать его знак, т. е. определять момент по формулам (96), (97) и (98).  [c.139]

Как определить момент силы относительно оси Знакомство с понятием момента силы относительно оси начнем с конкретного примера. Дверь (рис. 76) может поворачиваться вокруг оси. Механическое воздействие силы F, поворачивающей дверь, зависит не только от величины, но и от положения вектора силы по отношению к оси. Разложим силу F на две составляющие, из которых одну Q направим параллельно оси, а другую Р расположим в плоскости, перпендикулярной оси. Очевидно, что составляющая, параллельная оси, поворачивать дверь не будет, и действие силы F на закрепленную на оси дверь характеризуется моментом составляющей Р (расположенной в плоскости, перпендикулярной к оси) относительно точки пересечения оси и плоскости.  [c.141]


Момент пары, подобно моменту силы относительно точки,— векторная величина. Вектор момента пары перпендикулярен плоскости пары. Но у всякой плоскости имеется две стороны. Условились вектор момента восставлять с той стороны, с которой пара представляется поворачивающей свое плечо против хода часовой стрелки (рис. 83, а). Таким образом, вектор момента пары сил характеризует не только величину воздействия пары на тело, но и плоскость пары, а также и направление, в котором силы пары стремятся повернуть тело.  [c.149]

Словами это равенство можно прочитать так момент равнодействующей системы сходящихся сил относительно какой-либо точки равен сумме моментов всех сил относительно той же точки. Момент силы относительно точки есть вектор, поэтому сумма является геометрической. В частном случае, если все силы и центр моментов лежат в одной плоскости, то все векторы моментов направлены по  [c.232]

Момент скользящего вектора относительно оси вычисляется как момент его проекции на плоскость перпендикулярную оси, взятый относительно точки пересечения оси с плоскостью. Указанный момент не меняется при смещении плоскости вдоль оси.  [c.28]

Момент пары есть сумма моментов векторов пары относительно произвольной точки О. Момент пары перпендикулярен плоскости пары и направлен так, что из его конца вращение плеча, создаваемое парой, видно происходящим против хода часовой стрелки.  [c.31]

Решение. Прямоугольный параллелепипед имеет три плоскости симметрии, взаимно перпендикулярные и проходящие через середины ребер. Центр масс С совпадает с точкой пересечения этих плоскостей. Главные центральные оси инерции начинаются в точке С и направлены параллельно соответствующим ребрам параллелепипеда. Пронумеруем оси так, чтобы направляющие векторы в1 — первой оси, ег — второй оси, ез — третьей оси были параллельны ребрам с длинами а, Ь, с соответственно. Найдем моменты инерции Пь Пз, Пз относительно координатных плоскостей, перпендикулярных векторам еь ез, ез. Для того чтобы найти Пь рассечем параллелепипед на п одинаковых слоев плоскостями, перпендикулярными вектору ех. Момент инерции каждого такого слоя будет совпадать с моментом инерции пересечения этого слоя с первой главной осью, когда этому пересечению сопоставлена масса всего слоя. Переходя к пределу при п -+ оо. видим, что момент Пх будет совпадать с моментом инерции относительно С отрезка, равного пересечению параллелепипеда с первой главной осью, имеющего длину а и массу, равную массе всего параллелепипеда. Аналогичные рассуждения можно провести с целью расчета моментов Пз и Пз. Воспользовавшись затем решением задачи 1.14.2, получим  [c.67]

Положение центра масс С механической системы массой т = = 50 кг определяется радиусом-вектором = Зг + 4 + 5 . Определить статический момент масс этой системы относительно плоскости Оху. (250)  [c.220]

Чтобы найти момент скользящего вектора А относительно оси Ог, надо провести произвольную плоскость, перпендикулярную к оси Ог, спроектировать вектор А на эту плоскость, найти момент вектора А1, полученного проектированием вектора А, относительно точки О пересечения оси с плоскостью и спроектировать момент вектора А1 на ось Ог.  [c.158]

Чтобы найти момент силы относительно оси, надо провести произвольную плоскость, перпендикулярную к оси, спроектировать вектор силы на эту плоскость и найти момент, проекции силы, рассматривая се как вектор, относительно точки пересечения плоскости с осью.  [c.264]

Установим зависимость между моментом силы относительно точки и моментом силы относительно оси. Для этого момент силы Р относительно точки О, обозначенный Шо(Р) (рис. 83), отложим в виде вектора, направленного перпендикулярно к плоскости ОАВ. Затем через точку О проведем какую-либо ось, определим момент силы относительно этой оси и отложим на оси отрезок ОК, соответствующий в принятом масштабе моменту относительно оси.  [c.68]

Аналитические выражения моментов вектора относительно осей координат. Пусть дан вектор Ру с началом в точке Ау и с концом в точке Ву (рис. 1). Обозначим через Ху, Уу, Zy координаты его точки приложения Ау и через Ху, Kj, Zy его проекции на оси Ох, Оу, Oz. Момент Ny вектора относительно оси Oz равен удвоенной площади проекции треугольника ОАуВу на плоскость хОу, причем этой величине площади приписывается знак согласно установленному ранее правилу. Но одна из вершин проекции совпадает с точкой О, а две другие имеют в плоскости хОу координаты  [c.24]

Анализируя равенства (13.35), приходим к выводу, что для уравновешивания главного вектора сил инерции звеньев плоского мехагшзма необходимо и достаточно так подобрать массы этого механизма, чтобы общий центр масс всех звеньев механизма оставался неподвижным. Для уравновешивания главных моментов относительно осей хну необходимо и достаточно подобрать массы механизма так, чтобы центробежные моменты инерции масс всех звеньев механизма относительно плоскостей хг и yz были постоянными.  [c.279]

Векторным моментом силы относительно точки называют вектор, приложенный в этой точке и равный по модулю произведению силы на плечо силы относителыю этой точки. Векторный момент силы направлен перпендикулярно плоскости, в которой лежат сила и моментная точка, таким образом, что с его конца можно видеть стремление силы вращать тело против движения часовой стрелки (рис. 20).  [c.25]

Рассуждая аналогично, можно последовательно привести к точке силы пространственной системы. Но теперь главный вектор есть замыкающий вектор пространственного (а не плоского) силового многоугольника главный момент уже нельзя получить а.дгебраиче-ским сложением моментов данных сил относительно точки приведения. При приведении к точке пространственной системы сил присоединенные пары действуют в различных плоскостях и их моменты целесообразно представлять в виде векторов и складывать геоме-трнческн. Поэтому полученные в результате приведения пространственной системы сил главный вектор (геометрическая сумма сил системы) и главный момент (геометрическая сумма моментов сил относительно точки приведения), вообще говоря, не перпендикулярны друг другу.  [c.63]


Решение. Найдем т Р), пользуясь определением момента силы относительно оси. Для этого проектируем вектор Р на плоскость ABED, перпендикулярную к оси О-к. Полученная проекция Pi будет направлена по BE и равна по величине  [c.89]

Если вектор силы АВ переместить вдоль линии действия силы в пределах абсолютно твердого тела, к которому сила АВ приложена, оставив точку О неизменной, то вектор момента не изменится, так как не изменятся плоскость и площадь треугольника ОАВ. Сила является вектором скользящим, и действие силы, а следовательно, и ее момент не изменяются при перенесении силы вдоль линии действия. Напротив, если мы переменим точку О, то положение и площадь треугольника ОАВ, вообще говоря, изменятся, а следовательно, изменится и момент силы. Поэтому момент силы относительно какой-либо точки О является вектором прикргплгнным, он приложен к точке О и переносить его в какое-либо другое место тела нельзя.  [c.59]

Допустим, что уравновешенный гироскоп быстро вращается вокруг своей оси ef, на которую действует небольшая внешняя сила, стремящаяся повернуть ее. Эта сила вызовет вращение гироскопа вокруг оси, перпендикулярной к плоскости, определяемой силой и вектором о)[. Пусть угловая скорость этого вращения (02 и момент силы относительно неподвижной точки О М, тогда на основани и уравнения элементарной теории гироскопа У(й2>< 1==М, откуда  [c.196]

Далее, выразим через 2 момент сил, действуюш,их на сечение стержня. Это легко сделать, используя опять результаты, полученные ранее для чистого кручения и слабого чистого изгиба. При чистом кручении момент сил относительно оси стержня равен Ст. Поэтому заключаем, что в общем случае момент относительно оси I должен быть равен = Q . Далее, при слабом изгибе в плоскости g, t момент относительно оси ti есть EIJR. Но при таком изгибе вектор й направлен по оси так что MR есть просто его абсолютная величина и EIJR = Е - Поэтому заключаем, что в общем случае должно быть Mi = EI Qi, = = Е1 (оси , т] выбраны по главным осям инерции сечения). Таким образом, компоненты вектора М момента сил равны  [c.100]


Смотреть страницы где упоминается термин Момент вектора относительно плоскости : [c.37]    [c.401]    [c.63]    [c.56]    [c.26]    [c.112]    [c.75]    [c.146]    [c.21]    [c.22]    [c.62]   
Теоретическая механика (1987) -- [ c.132 ]



ПОИСК



Вектор относительного

Момент вектора

Момент вектора относительно оси

Момент вектора относительно оси относительно оси

Момент вектора относительно точки плоскости

Момент векторов относительный

Момент относительно оси

Момент относительно плоскости

Моменты параллельных связанных векторов относительно плоскости



© 2025 Mash-xxl.info Реклама на сайте