Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связанность распределения

Как известно, эти уравнения выражают тот факт, что электрическое поле и магнитная индукция (Ей В) создаются как свободными зарядами и токами, р, ру, так и связанными, распределение которых зависит от поляризаций согласно формулам  [c.149]

Примером связанности распределения может служить последовательность, состоящая из случайно выбираемых с частотой 90% символов Лис частотой 10% символов В. Часть такой последовательности может иметь, например, следующий вид  [c.84]


Следовательно, связанность распределения приводит к избыточности  [c.84]

При решении практических задач приходится иметь дело с системой связанных между собой случайных величин. То г да функцией распределения системы п случайных величин (А, , Х2, называется вероятность  [c.104]

Вторая задача имеет своей целью определение мощности, необходимой для воспроизведения заданного движения машины или механизма, и изучение законов распределения этой мощности па выполнение работ, связанных с действием различных сил на механизм, а также решение вопроса о сравнительной оценке механизмов с помощью коэффициента полезного действия, характеризующего степень использования общей энергии, потребляемой машиной или механизмом, на полезную работу. К этой же задаче относится вопрос об определении истинного движения механизма под действием приложенных к нему сил, т. е. задачи о режиме его движения, а также вопрос о подборе таких соотношений между силами, массами и размерами звеньев механизма или машины, при которых движение механизма или машины было бы наиболее близким к требуемому условию рабочего процесса.  [c.204]

Основные методы вычисления КИН можно разделить на следующие прямой метод, метод линейного интегрирования и метод податливости. Прямой метод вычисления КИН наиболее очевиден и основывается на том факте, что распределение напряжений или перемещений вблизи вершины трещины описывается зависимостями, однозначно связанными с КИН. Зная распределение напряжений или перемещений вблизи вершины трещины, можно определить величину КИН. Как показывают расчеты, для вычисления КИН этим методом нужна очень мелкая сетка К 5, что приводит к большим потребностям в оперативной памяти и времени счета на ЭВМ [270, 294, 299, 432]. К прямым методам можно отнести также методы, в которых используется специальный элемент, учитывающий вид особенности напряжений в вершине трещины [291]. В этом случае количество КЭ, необходимое для определения КИН, значительно сокращается.  [c.195]

Модель Райса—Джонсона [397] основана на решении задачи о распределении деформаций перед трещиной с учетом изменения геометрии ее вершины в результате пластического течения. В отличие от ранее полученных в приближении малых геометрических изменений вершины решений учет затупления приводит к предсказанию концентрации деформаций в области порядка раскрытия б перед вершиной. Деформационный критерий бхх = е/ можно записать с использованием полученного в работе [397] решения e = Ехх г18) в виде соотношения б = = air, где ai —константа, связанная с е/. Принимая, как обычно, в качестве дополнительного условия распространения трещины  [c.228]


Ультразвуковой метод основан на физическом явлении, связанном с изменением скорости прохождения ультразвуковых волн в зависимости от величины напряжений, действующих в металле. Метод дает хорошие результаты в случае однородного распределения напряжений или при необходимости определить среднеинтегральную величину напряжений по толщине сварного соединения. Однако с помощью данного метода невозможно определить характер распределения напряжений по толщине листа.  [c.270]

При оценке погрешностей фотоэлектрической пирометрии было найдено, что имеются источники погрешностей, связанные со способа.ми взаимодействия оптической системы и источника. Погрешности этой категории исследовать довольно трудно, так как они часто являются результатом сложных комбинаций различных эффектов. Один из наиболее важных эффектов такого рода связан с размером наблюдаемого источника и распределением яркости за пределами геометрически наблюдаемой площади. Для объекта конечного размера, находящегося в плоскости источника, поток излучения, прошедший плоскость диафрагмы, из-за дифракции меньше потока, который должен иметь место в соответствии с геометрической оптикой. Чтобы эти потери свести к нулю, нужно было бы увеличить размер источника так, чтобы в отверстии диафрагмы он стягивал угол 2л стерадиан. Таким образом, если пирометр измеряет по очереди два источника с разными размерами, сравнение будет содержать погрешность, обусловленную дифракцией. Дополнительная погрешность возникает в результате рассеяния на линзах объектива или на зеркале. Она также будет зависеть от размера источника, так как рассеяние пропорционально освещенности элементов объектива.  [c.379]

Перейдем к определению функции распределения пузырьков газа по размерам / В). Как и в предыдущем разделе, будем считать, что каждому виду турбулентных образований жидкости соответствует определенная частота пульсаций м и связанное с ней  [c.134]

Первый член в правой части (4. 9. 10) описывает изменение моментов функции распределения пузырьков газа по размерам, связанное с коалесценцией пузырьков. Второй член описывает изменение моментов функции распределения, обусловленное процессами дробления пузырьков.  [c.181]

В случае замкнутого контура пленка деформируется иначе. Часть плиты, расположенная внутри контура, должна рассматриваться как не связанная с внешней областью и при деформации пленки под действием давления поднимается вместе с ее внутренним контуром. Деформированная пленка образует поверхность примерно постоянного угла подъема (рис. 101, ), откуда следует, что распределение напряжений по толщине профиля близко к равномерному.  [c.99]

Для решения задач по определению напряжений, возникающих в теле при неравномерном распределении температур, используется математический аппарат теории упругости. Принимая условие независимости свойств материала от температуры и используя закон Гука, определяющий линейную связь напряжений и деформации, удалось получить ряд решений применительно к нагреву различных конструкций. Однако сварочный процесс связан с изменением температуры в значительных пределах и, как  [c.417]

Перераспределение легирующих элементов и примесей в сталях при высокотемпературном сварочном нагреве — сложный диффузионный процесс, который может приводить как к снижению, так и повышению МХН. После завершения аустенитизации внутри зерен аустенита существует неравномерное распределение легирующих элементов и примесей, особенно углерода и карбидообразующих. Углерод концентрируется в местах, где ранее располагались частицы цементита, а также на участках зерна, где находятся еще не полностью растворившиеся специальные карбиды. Для сталей обыкновенного качества и качественных после горячей обработки давлением (прокатки, ковки) характерна начальная химическая неоднородность, связанная с волокнистой макроструктурой и полосчатой микроструктурой. Волокнистая макроструктура образована строчками раздробленных и вытянутых вдоль направления деформации неметаллических включений (сульфидов, оксидов, фосфидов). В зоне строчек имеет место повышенное содержание S, Мп, О2, Si, Р, А1. Полосчатая микроструктура вызвана более высокой концентрацией углерода в осях  [c.514]


Таким образом, основная характеристика геометрии масс — тензор инерции тела — позволяет ввести две важные характеристики распределения масс тела по отношению к рассматриваемой точке пространства первой характеристикой является эллипсоид инерции, построенный в этой точке, второй— связанная с ним система главных осей инерции. При переходе от одной точки к другой, вообще говоря, меняются как эллипсоид инерции, так и направления глав-, ix осей. Разумеется, существует исключительный случай, когда главными осями инерции являются любые ортогональные оси, про Денные через рассматриваемую точку,— такой случай имеет место, когда эллипсоид инерции в точке является сферой.  [c.179]

Анализ изменения распределения дефектов внутренней поверхности трубопровода, выявленных при повторных прогонах внутритрубного ультразвукового дефектоскопа-снаряда, показал, что увеличение их числа произошло неравномерно по длине трубопровода и имело место в основном на тех участках, где при первом прогоне было зафиксировано наибольшее количество дефектов. Следовательно, рост числа дефектов за последние годы не был явлением случайным, а непосредственно связан с усилением воздействия одного или группы рассмотренных факторов на отмеченных участках трубопровода.  [c.114]

Понятия о мгновенном центре скоростей и мгновенном центре ускорений плоской фигуры очень удобны для вычислений, но связанные с ними картины распределения скоростей и ускорений не отображают полностью реальное движение фигуры. Это происходит потому, что вводя эти понятия мы рассматривали движение лишь в данное мгновение, при данном положении тела, т. е. пытались рассматривать движение как бы в отрыве от основных условий его сущ,ествования — времени и пространства. Результаты такого подхода к вопросу, конечно, не могут быть полными и объективными.  [c.242]

Влага в древесине может заполнять внутренние пустоты (каналы сосудов, полости клеток, межклеточные пространства), — эта влага называется капиллярной или свободной кроме того, влага может пропитывать клеточные оболочки (межмицеллярные пространства), — влага гигроскопическая или связанная. Распределение влаги в древесине ствола растущего дерева неравномерно как по радиусу, так и по высоте ствола.  [c.279]

В некоторых случаях наличие одномерных длиннопериодных структур может быть связано с особенностями электронного спектра, которые возникают с приближением поверхности Ферми к границе зоны Бриллюэна [107]. Такая ситуация имеет место, по-видимому, в системах uAu, ujAu, uPt и кобальте, легированном малыми добавками Та, Nb, Ge, А1, С [108]. Особенность сплава внедрения Со—С состоит в изменении электронного механизма стабилизации одномерных длиннопериодных структур с ростом содержания углерода выше предела растворимости. Здесь структурная перестройка сопровождается перераспределением легирующего элемента, что, в свою очередь, приводит к изменению упругих полей. Термодинамическое исследование [106] показало, что при определенных условиях взаимно связанное распределение концентрации и дефектов упаковки должно приобретать периодический характер.  [c.135]

Таким образом, шаровая форма твэлов оказывается весьма перспективной как для реакторов ВГР, так и реакторов-размно-жителей БГР. Однако реализация преимуществ шаровой формы топливных элементов наталкивается на серьезные затруднения, связанные, в первую очередь, с недостаточными сведениями в области гидродинамики, теплообмена и структуры подвижных шаровых засыпок при высоких теплонапряженностях активной зоны. Не менее важными являются экспериментальные сведения о распределении газовых потоков, возможности образования застойных зон как на поверхности шарового твэла, так и в макрополости, о сохранении стабильности структуры шаровой засыпки в случае подвижной активной зоны. Для правильного выбора размера шаровых твэлов реактора ВГР и микротоплив-ных частиц реактора БГР необходимо располагать методикой оптимизационных исследований. Решению некоторых из этих вопросов и посвящен предлагаемый материал.  [c.8]

Систему уравнений для вывода критериальных зависимостей исследуемого класса дисперсных теплоносителей получим, используя предложенную выше модель гетерогенной элементарной ячейки. Этот подход, по-види-мому, связан с минимальными физическими погрешностями, что существенно для теории подобия. Возникающая при этом математическая некорректность вывода соответствующих дифференциальных уравнений связана с тем, что к рассматриваемому молю гетерогенной системы в силу конечности его размеров и дискретности его 1компонентов неприменимы точные математические методы. Мож но полагать, что для дисперсных систем в принципе невозможно получить полностью корректную (одновременно с физической и формально-математической точек зрения) систему дифференциальных уравнений пока не будут предложены соответствующие функции распределения, аналогичные функциям Максвелла и Больцмана для газа. Поэтому в дальнейшем воспользуемся приближенным методом конечных разностей, дополнительно учитывая следующее  [c.33]

Прежде чем перейти к рассмотрению результатов экспериментальных исследований моделей электрофильтров с конкретными условиями подвода потока, остановимся еще раз на вопросе о вторичном эффекте, связанном со слиянием отдельных струек (факелов), протекающих через отверстия решетки, и отрывом за ней потока от с1енок канала. Для электрофильтра с пылевым бункером и верхним карманом (для крепления электродов) влияние отрыва, как отмечалось в гл. 3, должно заметно уменьшиться и распределение скоростей в струе за решеткой должно быть близким к распределению для неограниченной струи (см. рис. 1.46).  [c.217]

В первой строке ниже показано распределение относительных расходов ( 1 повеем четырем секциям электрофильтров, полученных в опытах на модели (М 1 15) золо-улавливающей установки, выполненной по приведенной на рис. 9.21, а схеме при отключении отводящих участков. Наибольший расход получается именно через секцию 11 электрофильтра Э2, расположенную напротив входного отверстия подводящего участка 2. Примерно такой же высокий расход получается и через секции, в которые газ поступает почти прямой струей из подводящего участка 1 и частично из подводящего участка 2. В секцию I (Э1) поступает только половина расчетного расхода, так как вход в нее связан с двумя резкими (под утлом 90°) поворотами струи, выходящей из подводящего участка 1.  [c.263]


АСУТП —АСУП. С развитием интеграции САПР —ГАП иерархическая структура КТС САПР должна трансформироваться в локальную вычислительную сеть — систему распределенной обработки информации. В состав таких систем входят интеллектуальные станции автоматизированного или автоматического проектирования, построенные иа базе сетей из микро-ЭВМ и связанные между собой на основе обмена информационными носителями, например, гибкими дисками или с помощью интерфейсов, образующих сеть проектирования.  [c.339]

Замыкание макроскопических уравнений дисперсных смесей связано с анализом процессов, происходящих около отдельных частиц, ц сводится к нахождению распределений перемещений, скоростей, температур, напряжений, концентраций и т. д. около дисперсных частиц. Этот анализ проводится независимо, и мето-дическп отличным образом от того, что было представлено в пре дыдущпх главах, он связан с решением краевых задач однофазной сплошной среды.  [c.113]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]

Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]

Для постепенных отказов справед шв закон распределения, который дает вначале низкую плотность вероятности отка зов, затем максимум и далее падение, связанное с уменьшением числа элементов, оставшихся работоспособными. Наиболее универсальным, удобным и ншроко применяемым для практических расчеюн является нормальное распределение. Плотность вероятности отказов  [c.20]

Индекс у ко.эффициента /< выбран в связи с основным влиянием на eio величину скорости индекс у коэффициента Л 1 обусловлен тем, что концентрация нагрузки связана с изменением истинного угла наклона зуба f i индекс у коэффициента Ка в1,1бран условно и связан с тем, что распределение на1рузки между зубьями [1ассматривается в нормальной плоскости, где измеряется угол зацепления а.  [c.177]

S = 0,83ef ,, где коэффициент 0,83 связан у них с другим законом распределения нагрузки между телами качения.  [c.355]

Рассмотренная аналогия не является единственной. Для задачи о кручении бруса могут быть предложены и другие аналогии, связанные, например, с гидродинамическими законами течений. В теории упругости при решении нетсоторых задач используются также эле) тро-статические аналогии, где законы распределения напряясеннй в упругом теле устанавливаются путем замера напряженности электростатического поля в различных точках исследуемой области модели.  [c.97]

Близость энергии активации миграции к энергии активации самодиффузионных процессов свидетельствует о том, что миграция границ контролируется направленным перемещением вакансий. Другими словами, движение границы представляет процесс обмена местами атомов и вакансий (рис. 13.13). По своему атомному механизму и энергии активации миграция занимает некоторое промежуточное положение между самодиффузией по границам и объему зерен. В случаях малоугловых и специальных большеугловых границ обмен местами атомов и вакансий происходит в малоискаженных приграничных зонах, поэтому энергия активации миграции границы будет близка к энергии активации объемной самодиффузии в решетке. По мере разориентации границы и увеличения степени искажения решеток в приграничных зонах доля энергии активации, связанная с образованием и перемещением вакансий, будет уменьшаться. Общая энергия активации миграции будет приближаться к энергии активации самодиффузии по границам. В соответствии с этим большеугловые границы более подвижны, чем малоугловые и специальные. В условиях неравномерного распределения температуры, например при сварке, отмечают, что наиболее интенсивная миграция границ происходит в направлении тепловых потоков. Это, вероятно, обусловлено направленным потоком вакансий от более нагретого к менее нагретому участку металла.  [c.505]

Общественная деятельность на посту председателя месткома отнимала у него много времени и сил, но он не считал себя вправе уклоняться от нее. На этих шумных заседаниях, особенно связанных с распределением благ , когда интересы партии начальства очень часто не совпадали с интересами партии большинства , он давал вьновориться всем, но в конце, когда уже казалось— нет выхода и нет согласия, он предлагал решение, которое оказьшалось единственно правильным. Часто администрация института и партструктура пытались его ломать, заставить отойти от принятого решения. Он нервничал, переживал, но никогда не отступал.  [c.235]

Рассмотрим конструкции, прсдстгвля10щпе собой совокупность отдельных твердых тел, связанных между собой. На рнс. 106 изображена плоская конструкция, состоящая из двух твердых тел АС и BD , связанных между собой шарниром С. На конструкции действуют сила Я, пара сил с моментом /М и равномерно распределенная нагрузка интенсивностью q. В такой конструкции связи, соедн-  [c.73]

В целом анализ задач технологического проектирования ЭМП показывает следующее. Эти задачи по содержанию наиболее разнообразны в сравнении с задачами расчетного и конструкторского проектирования. Однако по методам решения они наименее формализованы. Только небольшая часть задач, в основном связанных с динамическим моделированием технологических процессов r оценкой затрат на производство, решается формально с помощью методов и средств расчетного проектирования ЭМП. Остальные задачи технологического проектирования ЭМП в настоящее время можно решить с помощью методов и средств, используемых в диалоговом конструировании в САПР. Необходимо отметить, что в прикладной математике и математическом программированитг разработан ряд методов, оптимизирующих решение задач по закупке и размещению оборудования, распределения ресурсов, составления  [c.189]


БАЙЕСОВЫЙ МЕТОД - метод принятия оптимальных статистических решений, основанных на предположении, что параметр распределения вероятностей наблюдаемого случайного события, влияющий на характер принимаемых решений, является случайной величиной с известным априорным рас. рс1еле-нием. Приходим к решениям, описываемым байесовско , решающей функцией и имитирующим средний риск, т.е. математическое ожидание потерь, связанных с неправильными или неточными решениями. В частности, когда принимаются решения о значениях наблюдаемого параметра распределения, а риск равен вероятности ошибочного решения, Б М приводит к решению, соответствующему тому значению параметра, которое имеет наибольшую апостериорную вероятность при данном ре-  [c.6]


Смотреть страницы где упоминается термин Связанность распределения : [c.122]    [c.217]    [c.84]    [c.85]    [c.36]    [c.59]    [c.274]    [c.299]    [c.287]    [c.186]    [c.47]    [c.106]    [c.381]    [c.252]    [c.132]   
Системы человек-машина Модели обработки информации, управления и принятия решений человеком-оператором (1980) -- [ c.84 , c.85 , c.101 , c.103 , c.116 , c.120 ]



ПОИСК



Мод связанность

Р связанное



© 2025 Mash-xxl.info Реклама на сайте