Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика системы твердого тела основное уравнение

Динамика системы твердого тела, основное уравнение 275  [c.427]

Эти знаменитые уравнения описывают изменение со временем положения мгновенной угловой скорости вращения П относительно системы координат, связанной с телом. Они решают лишь часть динамической задачи о свободном вращении твердого тела и должны быть дополнены описанием движения системы координат, связанной с телом относительно системы неподвижных осей. Эта задача, как и ряд других задач динамики твердого тела, выходит за рамки данной книги, посвященной основным принципам механики и обращающейся к приложениям лишь для иллюстрации применения этих основных принципов. Для дальнейшего изучения этой темы читатель отсылается к учебникам, указанным в библиографии.  [c.130]


В настоящей главе мы будем придерживаться, применительно к вопросам динамики, того же порядка изложения. В 2 на основании разделения сил, действующих на какую-нибудь систему, на внешние и внутренние мы установим два векторных уравнений (основные уравнения движения), применяя которые к любой возможной системе мы придем к весьма разнообразным выводам ц -которые в случае твердого тела, как мы это увидим в гл. VII будут достаточны для определения движения.  [c.256]

В заключение укажем, что автор далек от мысли считать себя пионером в деле перестройки преподавания теоретической механики. Основные идеи, реализованные в предлагаемой схеме, конечно, хорошо известны. Можно заметить, например, что вывод условий равновесия из уравнений движения (статика как частный случай динамики) встречается в ряде хорошо известных учебников. Но основная мысль предлагаемой схемы — последовательное рассмотрение абсолютно твердого тела как примера системы материальных точек (особенно это касается кинематики), насколько нам известно, не реализовалась. Это и побудило нас написать эту статью.  [c.76]

Книга содержит обзорные и оригинальные статьи ведущих российских ученых по основным разделам нелинейной механики. Излагаются вопросы составления и анализа уравнений движения механических систем с различными связями (в том числе и с односторонними с учетом ударных явлений), в различных силовых полях (в том числе при наличии сил сухого трения). Обсуждаются вопросы корректности тех или иных моделей механики, вопросы интегрируемости и детерминированного хаоса, вопросы устойчивости и теории возмущений. Исследуются разнообразные конкретные механические системы задача трех тел с учетом их несферичности или упругости, задачи динамики космических аппаратов, задачи динамики твердых тел в различных силовых полях (в том числе с учетом ударных взаимодействий и сил сухого трения), задача динамики твердого тела со струнным приводом, орбитальные тросовые системы и т. д.  [c.3]

При движении стержня вдоль оси под действием заданной системы сил постоянные В и С находятся так же и не зависят от времени. Для определения постоянной А запишем основное уравнение динамики для стержня как для абсолютно твердого тела  [c.370]

При описании движения твердого тела используются различные системы переменных. Каждая система имеет свои преимущества и недостатки для каждой конкретной задачи. Так для поиска первых интегралов, исследования некоторых вопросов устойчивости и топологического анализа наиболее удобными являются такие переменные, в которых уравнения полиномиальны (или даже однородны). Для численного интегрирования, кроме простой системы дифференциальных уравнений желательно иметь наименьший порядок системы. Для качественного изучения, применения методов теории возмущений и нелинейной нормализации необходимы системы канонических переменных, наиболее отражающие специфику невозмущенной задачи. Здесь мы приводим основные наборы переменных, используемые в динамике твердого тела. На практике, особенно в приложениях к гироскопической технике, также используются различные комбинации и модификации этих систем, обладающих более специальными свойствами.  [c.39]


Основная цель настоящей главы - получить уравнение движения материальной точки в простейших неинерциальных СО - равноускоренной и равномерно вращающейся. Законы динамики системы материальных точек и твердого тела выводятся из этих уравнений движения точно так же, как в случае инерциальных СО.  [c.94]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


В 1948 г. Л. Г. Лойцянский и А. И. Лурье включили в свой Курс теоретической механики главу Динамика точки и тела переменной массы . Тем же по существу методом, что и Космодемьянский, они выводят основные уравнения динамики системы и твердого тела переменной массы. Однако в качестве интересной иллюстрации применения теоремы количества движения к сплошным средам авторы курса возрождают также подход Л. Эйлера к вычислению реактивной силы водометного судна (и реактивного момента гидравлической турбины), примененный им в середине XVHI в. Изложение теоремы Эйлера в современной векторной форме привело авторов к формулировке главные векторы объемных и поверхностных сил и векторы количества движения масс жидкости, входящих и выходящих сквозь два каких-нибудь сечения трубы в единицу времени, направленные внутрь выделенного объема, образуют замкнутый многоугольник. Совершенно таким же методом, как в свое время Эйлер определял реактивную силу водомета, авторы получили для реактивной силы свободного снаряда выражение  [c.242]

При использовании имеющейся )Д1ебной литературы по теоретической механике у студентов или инженерно-технических работников могут возникнуть затруднения в составлении уравнений движения машин, модели которых представляют совокупность твердых тел (или даже одного тела), совершающих пространственное движение. Причиной этого является недостаточный объем в )Л1ебной литературе таких разделов, как кинематика и динамика твердого тела и, как правило,. ограниченность рассмотрения основных теорем динамики только в неподвижной системе координат. Материал, содержащийся в рецензируемом учебном пособии, является достаточным для того, чтобы, не обращаясь к другой литературе по механике, можно было составить уравнения пространственного движения машинь или аппарата, модель которых представляют в виде совокупности твердых тел. Более того, подробное изложение уравнений Лагранжа—Максвелла позволяет говорить о единой методике составления уравнений движения электромеханических и механических систем.  [c.120]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Многие детали станков имеют оси симметрии, совпадающие с осями основной системы координат. Асимметрия деталей станка приводит к наклону осей инерции твердого тела отцосительно осей основной системы координат. Наклон главных осей инерции вызывает появление инерционных связей в уравнениях движения для моментов сил. Важнейшие корпусные детали не имеют большой асимметрии. Асимметричные детали мало влияют на динамику станка. Чтобы избежать появления инерционных связей в уравнениях движения и учитывая изложенное, наклоном главных осей инерции тел со слабой асимметрией в дальнейшем пренебрегаем.  [c.180]



Смотреть страницы где упоминается термин Динамика системы твердого тела основное уравнение : [c.400]    [c.265]    [c.2]    [c.221]    [c.14]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.275 ]



ПОИСК



70 - Уравнение динамики

Динамика основное уравнение

Динамика системы твердого тела

Динамика твердого тела

Динамика твердых тел

Основное уравнение динамики

Основное уравнение динамики системы

Основное уравнение динамики системы твердого тела

Основное уравнение динамики системы твердого тела

Основные Динамика

Система основная

Системы Динамика

Системы твердых тел

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте