Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация (малая) теория — Коши

В теории течения статические уравнения (уравнения равновесия) и геометрические уравнения (Коши и Сен-Венана) будут иметь тот же вид, что и в теории упругости или теории малых упруго-пластических деформаций.  [c.293]

Введение. В предыдущих параграфах настоящей главы было показано, что при определенных условиях решение граничных задач теории ползучести можно получить через решение соответствующих упругих задач, если деформации этих тел малы, т. е. компоненты ц тензора деформации Коши и компоненты со вектора поворота, будучи одного порядка малости, удовлетворяют условиям  [c.295]


Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]

Рассмотрим упругопластическое тело, находяш ееся под воздействием массовых сил pFi и поверхностных нагрузок / . Для решения задач теории малых упругопластических деформаций, то есть для определения неизвестных функций перемещений, деформаций и напряжений щ, aij, Sij] i,j — 1,2,3), имеются уравнения равновесия, соотношения Коши, уравнения совместности деформаций и граничные условия  [c.43]

Теория упругости как стройная научная дисциплина зародилась в начале XIX столетия, когда почти одновременно Л. Навье (1821) [54], А, Коши (1822) [40] и С. Пуассон (1829) [55] вывели общие уравнения равновесия и движения упругих тел и дали правильную постановку соответствующих задач. При этом допускалось, что перемещения точек тела весьма малы и что соотношения между напряжениями и деформациями линейны.  [c.9]

Деформация (малая) теория — Коши 22, 50—55 однородная —. 47 чистая —, 50 компоненты —, 51, 137 преобразование компонентов —, 53 инварианты, 55 типы —, 55—57 разложение — на объемное расширение и сдвиг, 58 тождественные соотношения между компонентами —, 30, tO главные оси —, 48 главные удлинения —, 53 определение смешений по компонентам —, 61 компоненты —в криволинейных координатах, 64 разложение однородной — на чистую — и вращение, 49 среднее значение компрнен-  [c.668]


Анри Виктор Рено (Regnault [1842, 1], [1847, 1]), изучая поведение резервуаров в своих исследованиях сжимаемости воды, отметил, что его результаты, по-видимому, не согласуются с теорией Пуассона — Коши. Он предложил Вертгейму более детально рассмотреть эту проблему. Первый эксперимент Вертгейма в связи с этим был проведен с резиновым стержнем квадратного поперечного сечения, достаточно большого для того, чтобы измерения можно было осуш,ествить с помош,ью штангенциркуля (Wertheim [1848, 1]). Его деформации достигали 200%, т. е. значения, при котором, как указывал позже Джеймс Клерк Максвелл, он не мог ожидать применимости элементарной теории упругости. Отметив, что остаточная деформация была минимальной, особенно в области малых деформаций, Вертгейм сравнил свои одновременно измеренные значения продольных удлинений и поперечных сужений со значениями коэффициента Пуассона v=l/4, v=l/3 и v=l/2, обнаружив при этом, как видно из рис. 3.28 (на котором изображен график, построенный по его данным), что в области малых деформаций данные, несомненно, не позволяют получить значение 1/4, предсказанное для изотропных тел.  [c.326]

Ошибочно полагая, что Вертгейм установил коэффициент Пуассона для резины равным 1/3, хотя тот на самом деле нашел только, что он не равен 1/4 (см. рис. 3.28), Амага подчеркивал, что предположение о равенстве коэффициента Пуассона для рассмотренных им двух твердых тел 1/3 совершенно несовместимо с его пьезометрическими наблюдениями над резиной. В соответствии с этим он вместо рассмотрения своих экспериментальных результатов как подтверждения того, что при малых деформациях резина, по существу, несжимаема, видел в них только доказательство того, что по крайней мере для одного материала коэффициент Пуассона не равен 1/3. То обстоятельство, что он не равен и 1/4, как того требует теория Пуассона — Коши, Амага приписывал тому, что, возможно, сами уравнения (3.5) — (3.8) в действительности неприменимы.  [c.365]

Функция, о которой здесь идет речь, есть взятая с обратным знаком потенциалыая энергия деформированного упругого тела, отнесенная к единице объема и выраженная в компонентах деформации частные производные этой функции по компонентам деформации равны компонентам напряжения. Грин предполагал, что эта функция может быть разложена по степеням и произведениям компонентов деформации, поэтому он представил ее в виде суммы однородных функций этих величин первого, второго, третьего и высших порядков. Первый из этих членов должен быть равен нулю, ибо потенциальная энергия до деформации должна иметь наименьшее значение а так как все деформации малы, то существенное значение имеет только один второй член. Из этого принципа Грин вывел свои уравнения теории упругости, содержащие в общем случае 21 постоянную. В случае изотропии остаются только две постоянные, и уравнения совпадают с теми, которые приведены в первом мемуаре Коши.  [c.25]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Выше указана только часть публикаций по нелинейным-проблемам эластомерного слоя и конструкций. Перечень работ можно бы продолжить, но это не меняет общей оценки состояния вопроса. Если создание линейной теории слоя можно считать завершенным и ее значение можно сравнить со значением классической теории оболочек для соответствующих краевых задач, то создание общей нелинейной теории слоя находится в-началь-. ной стадии. Опубликованных результатов мало, и они не достоверны даже в отношении интегральных упругих характеристик констукций, не говоря уже о полях перемещений и напряжений, В то же время только теоретические исследования и расчеты с последующей экспериментальной проверкой позволяют пороз11ь оценить влияние геометрической и физической нелинейности и решить такие важные вопросы, как пределы применения закона-Гука и выбор упругого потенциала. Лелать упор на физическую нелинейность при умеренных деформациях < 50%, по убеждению автора, неправильно. Есть три источника появления нели-. нейности задачи — формулы Коши, связывающие деформации с перемещениями, уравнения равновесия и закон упругости, которые, вообще говоря, независимы.  [c.23]


Квазистатическая задача А теории малых упруго-пластичест ких деформаций трансверсально изотропной однородной среды заключается в решении уравнений равновесия (3.49) при выпол-, нении граничных условий (3.50). При этом следует воспользоваться соотношениями Коши (3.51) и иметь в виду, что в (3.49) инварианты напряжений связаны с инвариантами деформаций функциями (3.31), которые в упругой области имеют вид (3.43). В случае разгрузки эти функции приобретают вид  [c.242]

Интересно отметить, что, наряду с Навье, двумя другими участниками развития теории упругости в 20-х гг. прошлого века были О. Коши и С. Пуассои, которые вместе с П. Жираром в 1819 г. написали итоговый отчет Академии об экспериментальных работах Дюло 1813 г. (Duleau [1819, 1]). Подобно экспериментальной работе Дюпена по древесине, проводившиеся примерно в то же самое время исследования Дюло примечательны тем, что содержали первые серьезные эксперименты по малым де рмациям сжатия, растяжения, изгиба и кручения элементов, выполненных из железа. Эти данные Дюло сделались вехой в области изучения малых деформаций металлов в течение последующей трети столетня.  [c.46]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

К осени 1822 г. Когци ) открыл большинство основных элементов чистой теории упругости. Он ввел понятие о напряжении и деформациях в дапной точке. Показал, что они могут быть определены шестью соответствуюш,ими компонентами. Исходя из гипотезы о сплошном и однородном строении твердого тела, Коши получил уравнения движения (или равновесия). Он впервые ввел в уравнения теории упругости две упругие постоянные, в то время как уравнения Павье содержали лишь одну. Соотношения, связываюш,ие малые деформации и перемегцения, названы его именем.  [c.11]

В дальнейшем Коши распространил свою теорию на случай кристаллического тела и воспользовался при этом гипотезой о материальных точках, взаимодействие которых осуществляется силами притяжения и отталкивания. Сила взаимодействия двух точек предполагалась направленной по соединяющей их прямой и являлась функцией расстояния между ними совокупность точек предполагалась однородной в том смысле, что если А, В, С суть любые три точки, то должна быть такая четвертая точка О, что отрезок СО равен, параллелен и направлен в ту же сторону, что и отрезок АВ. Наконец, было сделано допущение, что при деформации системы относительные смещения двух точек, каждая из которых находится в области действия другой, малы по сравнению с расстоянием между ними. В первом мемуаре з ), в котором Коши воспользовался этсй гипотезой, он получил выражения для сил, действующих на какую-иибудь  [c.22]

Первый мемуар Пуассона зб) по рассматриваемому вопросу был прочитан Парижской академии в апреле 1828 г. Этот мемуар интересен заключающимися в нем многочисленными приложениями общей теории к частным задачам. При рассмотрении вопроса об общих уравнениях Пуассон так же, как и Коши, начинает с вывода уравнений равновесия, выраженных в компонентах напряжения, и вычисляет усилие на какой-либо площадке, происходящее от интрамолекулярных сил. Формулу, выражающие напряжения через деформации, содержат суммы, которые берутся по всем молекулам , находящимся в области действия данной молекулы . Пуассон не находит возможным заменить все суммы интегралами и считает, что это может быть сделано лишь при суммировании по телесному углу вокруг данной молекулы , ро не при суммировании по величине,, расстояния, отсчитываемого от нее. Уравнения равновесия и движения, изотропного упругого твердого тела, которые получаются таким образом, не отличаются от уравнений Навье. Принцип, по которому суммирования могут быть заменены интегрированием, разъяснен Коши зз) следующим образом для, объема, содержащего очень много молекул и имеющего малые размеры по сравнению с радиусом той сферы, в которой проявляется заметное молекулярное действие, число молекул можно считать пропорциональным объему если теперь мы оставим в стороне молёкулы находящиеся в непосредственной близости к рассматриваемой молекуле, то действие всех молекул, заключенных в одном из малых объемов, о которых была речь, эквивалентно силе, ухиния действия которой проходит через центр тжкести объема, а величина пропорциональна этому объему и некоторой функции от расстояния между центром тяжести объема и данной рассматриваемой молекулой. Действие более удаленных молекул именуется регулярным , а действие более близких— нерегулярным . Пуассон считал, что нерегулярным действием более  [c.23]


Несмотря на то что, как неоднократно отмечалось в этой книге, классическая теория упругих жидкостей тривиально включается как частный случай в общую теорию упругости, классическая теория упругости при бесконечно малых деформациях с самого начала исключает из рассмотрения все жидкости, кроме некоторых особых, поскольку жидкость в общем случае не имеет естественной конфигурации. Как показывает (1), для бесконечно малых деформаций относительно естественной конфигурации тензоры напряжений Коши и Пиолы совпадают. С первого взгляда на (IX. 2-4) и (IX. 2-6) видно, что никакого такого совпадения двух т" нзоров напряжения не может быть, если отсчетная конфигурация не является естественной конфигурацией.  [c.297]


Смотреть страницы где упоминается термин Деформация (малая) теория — Коши : [c.207]    [c.325]    [c.328]   
Математическая теория упругости (1935) -- [ c.22 ]



ПОИСК



Деформация малая

Деформация малая Коши

Коши)

Теория деформаций

Теория малых

Теория малых деформаций



© 2025 Mash-xxl.info Реклама на сайте