Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтонова форма дифференциальных уравнений движении

Вывод канонических уравнений Гамильтона из принципа Гамильтона — Остроградского. Из принципа Гамильтона—Остроградского можно получить и другую форму дифференциальных уравнений движения голономной механической системы — канонические уравнения Гамильтона. Будем предполагать, что на рассматриваемую систему наложены идеальные голономные связи, а действующие на точки системы активные силы обладают силовой функцией и. Принцип Гамильтона для такой системы запишется в виде равенства  [c.465]

Прямые пути, т. е. истинные движения при заданной функции L, могут быть охарактеризованы как при помощи дифференциальных уравнений движения в форме Лагранжа, так и при помощи вариационного принципа Гамильтона. Однако между дифференциальными уравнениями движения и вариационными принципами имеется одно принципиальное различие.  [c.106]


Теперь выведем дифференциальные уравнения движения свободного твердого тела из принципа Гамильтона, а следовательно, получим уравнение (9) третьей лекции. Для этого необходимо составить вариацию живой силы 6Т и выражение работы действующих сил и для какого-либо изменения положения тела и преобразовать сумму 57 + У к форме  [c.50]

Если на месте T- - U стоит произвольная функция от величин q/ и 1, то на место дифференциальных уравнений движения надо поставить те уравнения, которые обращают в нуль часть вариации, стоящую под знаком интеграла. Для полноты аналогии мы должны привести эти дифференциальные уравнения к той же форме, которую придал дифференциальным уравнениям движения Гамильтон, для чего здесь также заменяем производные q череа  [c.130]

Кроме обычных, более или менее стандартных курсов высшей математики, для этого потребуются лишь небольшие дополнения из линейной алгебры (сведения по теории матриц и квадратичных форм), дифференциальных уравнений, а также аналитической динамики (уравнения Лагранжа и Гамильтона). Впрочем, в ряде втузов эти дополнения входят в обязательные программы по математике. Программа же по устойчивости движения предполагает всего 30— 40 часов.  [c.12]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Для того чтобы выписать дифференциальные уравнения движения в форме Гамильтона, вводятся (см., например, [32]) обобщенные импульсы  [c.23]

Как известно из механики, дифференциальные уравнения движения любой механической консервативной системы могут быть записаны в форме Гамильтона  [c.166]

Ирландский математик Гамильтон указал способ приведения дифференциальных уравнений Лагранжа к нормальному виду, дающий симметричные, т. е. одинаковые по форме уравнения относительно разных переменных, входящих в них. Эти дифференциальные уравнения получили название канонических дифференциальных уравнений движения. Они называются также уравнениями Гамильтона.  [c.202]


Для установления принципа стационарного действия использованы уравнения Лагранжа второго рода. Если же исходить из принципа стационарного действия, то на его основе можно установить все основные теоремы механики консервативных систем и получить дифференциальные уравнения движения в форме уравненнй Лагранжа второго рода. Установим зависимость между действием по Гамильтону 5 и действием по Лагранжу  [c.592]

Гамильтон показал, что если известен общий интеграл уравнений движения, представленных в канонической форме, то из него можно вывести полный интеграл этого уравнения с частными производными. Якоби дополнил эту теорему, доказав, что, обратно, если известен какой-нибудь полный интеграл этого уравнения с частными производными, то из него можно получить общий интеграл уравнений, движения. Как мы только что говорили, это уравнение с частными производными, которое мы будем называть уравнением Як оби. подобрано таким образом, что уравнения движения (6) являются для него дифференциальными уравнениями характеристик согласно известному методу интегрирования уравнений с частными производными первого порядка. Мы не будем, однако, пользоваться этим методом.  [c.473]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Члены, стоящие в этих равенствах слева, суть частные производные функции 5, которую мистер Гамильтон назвал главной функцией движения притягивающихся или отталкивающихся систем. Он думает, что если математики изучат эту главную функцию 5 и эти группы уравнений (5) и (6), они должны будут оценить их значение. Из группы (5) определяют Зп промежуточных интегралов известных уравнений движения (4) в форме Зп отношений между временем I, массами т, варьированными координатами х, у, z, варьированными составляющими скорости х, у, 2 и Зп начальными константами а, Ь, с, в то время как группа (6) определяет Зп конечных интегралов тех же известных дифференциальных уравнений, как.Зл отношений с бл начальными и произвольными константами а, Ь, с, а, Ь, с между временем, массами и Зл варьированными координатами. Эти Зп промежуточных и Зл конечных интегралов разрешают проблему динамики. Математики же находят семь промежуточных и ни одного конечного интеграла.  [c.285]

Подобные общие принципы, в которых выставляется требование, чтобы интеграл некоторой функции состояния, распространенный на время, в течение которого происходит изменение состояния, имел экстремальное значение, иногда обязательно минимальное, выдвигались неоднократно. Эти принципы имели различную форму, соответствующую тем или другим условиям, налагаемым на варьирование, но при правильном выполнении требуемых варьирований все эти принципы приводят к одним и тем же дифференциальным уравнениям для рассматриваемых процессов. Первым из этих интегральных принципов был предложенный Мопертюи принцип наименьшего действия, в котором утверждалось, что при всех происходящих в природе явлениях среднее значение живой силы имеет минимальное значение. Условия варьирования, имеющие при этом место для механических задач, найдены только Лагранжей, и тем самым этот принцип был только им научно обоснован. Эти условия с современной точки зрения могут быть выражены требованием, чтобы полная энергия варьированного движения оставалась равной полной энергии действительного движения. Впрочем, к тем же результатам приводит принцип Гамильтона, при котором имеет место другое условие, а именно, что время не затрагивается варьированием. Это последнее условие имеет то преимущество, что мы имеем возможность присоединить к Я добавочные члены, относящиеся к внешним силам. Поэтому мы оставляем форму Гамильтона, которая теперь при сохранении прежнего условия варьирования гласит  [c.465]

Возьмем консервативную механическую систему, имеющую п степеней свободы и находящуюся в постоянном консервативном поле сил. Ее движение может быть выражено дифференциальными уравнениями различной формы. Среди них уравнения, введенные Гамильтоном, имеют прежде всего преимущество симметрии. В гамильтоновом методе состояние механической системы с п степенями свободы определяется п координатами которые фиксируют конфигурацию системы и п соответствующих импульсов Pi.  [c.821]


Вопрос об определении места вариационных принципов механики в системе физических знаний заключается, конечно, в первую очередь в форме выражения этого принципа. Однако указанный вопрос не исчерпывается этой формой. Обычное толкование принципа наименьшего действия состоит в том, что его широкое применение в физике основано на удобной форме. Ряд авторов стоит на той точке зрения, что содержание принципа Гамильтона тождественно с содержанием основных уравнений динамики. Так, например, Кирхгоф говорит Принцип Гамильтона, д алам-беровы и лагранжевы дифференциальные уравнения поэтому совершенно равнозначны ). Такая точка зрения господствует в научной литературе XIX в. Тем не менее, отождествление содержания принципа Гамильтона и уравнений динамики представляет собой положение недостаточно обоснованное., Методологической основой этой концепции является непонимание соотношения между формой и содержанием вообще. Тот факт, что как в механике, так и вне ее принцип Гамильтона применяется в одной и той же форме, еще недостаточен для того, чтобы сделать вывод о том, что содержание этого принципа в том и другом случае одно и то же. Принцип Гамильтона выражает некоторое свойство неорганической природы, общее ряду форм движения, и постольку он применим к механическому движению как частному случаю.  [c.864]

Возьмем консервативную механическую систему, имеющую п степеней свободы и наход щуюся в постоянном и консервативном поле сил. Ее движение может быть выражено дифференциальными уравнениями различной формы. Среди них уравнения, введенные Гамильтоном, имеют прежде всего преимущество симметрии. В гамильтоновом методе состояние механической системы с п степенями свободы определяется п координатами qi, которые фиксируют конфигурацию системы и п соответствующих импульсов Pi. Координаты q могут быть выбраны различными способами, в частном случае это могут быть декартовы координаты х, у, г, цилиндрические или сферические координаты. Во всех случаях всякое изменение qi вызывает изменение Pi.  [c.895]

Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]

До сих пор мы сталкивались с законами движения классической механики, представленными в форме обыкновенных дифференциальных уравнений, а также дифференциальных и интегральных принципов. В настоящем разделе мы изучим запись тех же законов классической механики в виде нелинейного дифференциального уравнения первого порядка в частных производных, а именно познакомимся с уравнением Гамильтона— Якоби. Впервые вывел это уравнение У. Р. Гамильтон (1827 г., дополнения в 1830 и 1832 гг.), побуждаемый прежде всего важным для астрономии изучением хода светового луча в оптических инструментах. Исследования К. Якоби, связанные с каноническими преобразованиями, развили эту теорию и обогатили ее.  [c.42]

Значение уравнения в частных производных Гамильтона в теории распространения волн. Выше было выяснено, что уравнение в частных производных Гамильтона (8.7.17) в оптике выражает принцип Гюйгенса в дифференциальной форме. Хотя принцип Гюйгенса основан на предположении о волновом характере движения, построение с помощью этого принципа последовательности волновых фронтов является методом геометрической, а не физической оптики. Для того чтобы более глубоко изучить связь между уравнением в частных производных Гамильтона и принципами физической оптики, мы несколько преобразуем определение волнового фронта. До сих пор мы рассматривали волновые поверхности в связи с распространением элементарных световых возбуждений в геометрической оптике, однако они имеют не меньшее значение и в физической оптике при изучении распространения световой волны определенной частоты. При этом волновые поверхности могут быть определены как поверхности равной фазы. Скорость распространения света является в то же время скоростью распространения фазового угла, например ф, в направлении, перпендикулярном волновым поверхностям.  [c.315]

Подобно тому как непрерывное движение динамической системы можно описать разностными уравнениями на поверхности сечения Пуанкаре, физическую задачу, сформулированную в виде отображения, можно представить в форме уравнений Гамильтона. Это позволяет использовать методы усреднения и резонансной теории возмущений, рассмотренные в гл. 2. Как показано в п. 3.1в, разностные уравнения можно преобразовать в дифференциальные с помощью периодической б-функции (3.1.33). В случае отображения  [c.235]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Вместо принципа наименьшего действия можно представить другой принцип, который также состоит в том, что первая вариация некоторого интеграла обращается в нуль, и из которого можно получить дифференциальные уравнения движения еще более просто, чем из принципа наименьшего действия. Этот принцип раньше оставался незамеченньш, вероятно, потому, что здесь вместе с исчезновением вариации вообще не получается минимум, как это имеет место для принципа наименьшего действия. Гамильтон был первым, исходившим из этого принципа. Мы воспользуемся этим принципом для того, чтобы представить уравнения движения в той форме, которую им дал Лагранж в аналитической механике. Пусть, прежде всего.  [c.307]


Эта разнородность появляется и в принципе Гамильтона ), когда уравнения связей даны как дифференциальные уравнения в форме (1), причем время в них не входит. Это сделается ясным из примера следующего параграфа. Здесь следует только отметить, что разнородность движений опять-таки исчезает, когда имеются герцевы голономные материальные системы. В этом случае условия могут быть взяты в форме (2)  [c.550]

Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]

Соотношение, открытое Гамильтоном, дает новые заключения относительно метода вариации постоянных. Этот метод покоится на нижеследуюп1 вм интегралы системы дифференциальных уравнений динамики содержат известное число произвольных постоянных, значения которых в каждом отдельном случае определятся через начальные положения и начальные скорости движущихся точек. Если эти последние получают во время движения толчки, то благодаря этому изменяются только значения постоянных, а форма интегральных уравнений остается та же. Например, если планета движется по эллипсу вокруг солнца и нолучает во время движения толчок, то она будет после этого двигаться по новому эллипсу или, может быть, по гиперболе, во всяком случае по коническому сечению, а форма уравнений остается la же. р]сли такие толчки происходят не моментально, а продолжаются непрерывно, то явление можно рассматривать так, как будто постоянные изменяются непрерывно и притом таким образом, что эти изменения в точности изображают действие возмущающих сил. Эта теория вариации ностоян-дых представится в течение нашего исследования в новом свете.  [c.7]

Только благодаря TOifj, что мы взяли э.шменты невозму1ценной задачи как раз в форме, которую дает метод Гамильтона, мы смогли так упростить дифференциальные уравнения, что в каждое из них входит только одна производная от возмущаюп1,ей функции и что коэффициент при этой производной приводится к положительной или отрицательной единице. Этот выбор элементов имеет огромную важность поэтому при определении движения планет по методу Гамильтона мы подробно выяснили геометрическое значение введенных там произвольных постоянных.  [c.254]

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и кориуску-  [c.208]

Весьма интересна работа о методе вариации произвольных постоянных в применении к интегрированию уравнений Гамильтона <<0 вариациях произвольных постоянных в задачах динамики . В этой работе О.строградский выводит с большим изяществом дифференциальные уравнения теории возмущений, выражая через скобки Пуассона производные от постоянных, входяпщх в интегралы невозмзтценйого движения. Интересно отметить, что в статье все время используются линейные формы от вариаций канонических перемен-  [c.21]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]

Принцип Гамильтона, рассматриваемый как вариационный принцип стационарного действия, справедлив только для голономных систем. Невозможность непосредственного распространения интегральных принципов, установленных для голономных систем, на неголоном-ные системы была отмечена ещё Герцем [27]. Он обратил внимание на то, что не всякие две точки конфигурационного пространства могут быть соединены траекторией системы с неинтегрируемой дифференциальной связью. Первым, кто предложил интегральный принцип, пригодный для неголономных систем, по-видимому, был Гёльдер его принцип имеет форму интегрального равенства, не являющегося условием стационарности функционала он был получен при предположении перестановочности операций d w 5 (см. заметку 16). При этом, во-первых, варьированные траектории не удовлетворяют уравнениям неголономных связей, и во-вторых, уравнения движения неголономной системы не совпадают с уравнениями Эйлера вариационной задачи Лагранжа. Обсуждению этих двух вопросов посвящена обширная литература с начала двадцатого века и до настоящего времени. Приведём некоторые результаты [101.  [c.142]

В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]

Задаем вид преобразования переменных, коэффициентами которого являются неизвестные функции, подлежащие определению. Затем, предполагая, что канонические уравнения движения непотенциальной системы в новых переменных имеют гамильтонову форму, находим обобщенный гамильтониан, зависящий от искомых функций. Эти функции определяем из системы дифференциальных уравнений, полученных при отождествлении канонических уравнений движения рассматриваемой непотенциальной системы и канонических уравнений движения, соответствующих построенной функции Гамильтона, после перехода в этих уравнениях к старым переменным. Таким образом находим явный вид преобразования, обобщенную функцию Гамильтона, которая позволяет привести канонические уравнения движения непотенциальной системы к гамильтоновой форме, и обобщенную функцию Лагранжа, которая дает возможность привести уравнения движения непотенциаль-  [c.159]

Задаем вид обобщенной функции Лагранжа (Гамильтона), зависящей от искомых функций, предполагая, что уравнения движения, определяемые обобщенной функцией Лагранжа, являются уравнениями Лагранжа второго рода с нулевой правой частью (канонические уравнения имеют гамильтонову форму). Отождествляя полученные уравнения и уравнения движения непотенциальиой системы, находим систему дифференциальных уравнений для определения неизвестных функций. Решая эту систему, находим искомые функции, а затем определяем явный вид обобщенных функций Лагранжа и Гамильтона и преобразования переменных.  [c.160]


Пусть дифференциальные уравнения иевозмущенного движения записаны в форме уравиеиий Гамильтона (1) и решение имеет вид  [c.380]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]


Смотреть страницы где упоминается термин Гамильтонова форма дифференциальных уравнений движении : [c.547]    [c.227]    [c.187]    [c.5]    [c.17]    [c.504]   
Смотреть главы в:

Аналитическая динамика  -> Гамильтонова форма дифференциальных уравнений движении



ПОИСК



Гамильтон

Гамильтона дифференциальное

Гамильтона дифференциальные уравнени

Гамильтона уравнения

Гамильтона уравнения движения

Гамильтонова форма

Движение дифференциальное

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Зэк гамильтоново

Уравнение движения в дифференциальной форме

Уравнения форме

Форма дифференциальная

Форма уравнением в форме

Форма уравнений движения гамильтонов



© 2025 Mash-xxl.info Реклама на сайте