Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтонова структура уравнений движения

Гамильтонова структура уравнений движения  [c.323]

Исключение циклических переменных. Хотя канонические уравнения имеют гораздо более простую структуру, чем исходные уравнения Лагранжа, у нас нет общего метода интегрирования этих уравнений. Поэтому при интегрировании уравнений движения по-прежнему необычайно важную роль играют циклические переменные. Как только появляются циклические переменные, становится возможным частичное интегрирование данной механической задачи и сведение ее к более простой. Сам процесс сведения, однако, в гамильтоновой форме механики выглядит гораздо проще, чем в лагранжевой форме.  [c.214]


Так как уравнениям движения (34), (35) можно придать Гамильтонову структуру, то в соответствии с теоремой Лиувилля в этих двух случаях наличие интегралов (36) и (37) позволяет довести интегрирование до квадратур.  [c.95]

Большинство рассматриваемых в этой книге задач допускает запись в канонической гамильтоновой форме и обладает первым интегралом — интегралом энергии. Однако во многих случаях уравнения движения этих задач удобнее записывать не в канонической форме, а с помощью некоторой системы алгебраических переменных, наиболее приемлемой для исследований — поиска интегралов, частных решений, анализа устойчивости и пр. В этих переменных система не только сохранит многие свойства обычных гамильтоновых систем, но и приобретет некоторые характерные отличия, изучаемые в общей теории пуассоновых структур. С ней можно познакомиться по нашей книге [31].  [c.27]

Наиболее естественные и удобные для исследований формы уравнений движения твердого тела могут быть получены из общих уравнений динамики в квазикоординатах. Лагранжева форма этих уравнений была установлена А. Пуанкаре [255], а гамильтонова — П. Г. Четаевым [181]. Их возможные обобщения для неголономной ситуации рассматривались в [91, 154]. В динамике твердого тела уравнения Пуанкаре-Четаева приводят к гамильтоновым уравнениям с линейным структурным тензором, т. е. к только что рассматривавшейся структуре Ли-Пуассона (см. 1). Приведем здесь свой вывод уравнений Пуанкаре и Пуанкаре-Четаева, т.к. их обсуждение отсутствует в доступной литературе.  [c.33]

Пуассонова структура и уравнения движения. Рассмотрим сначала формально гамильтонову систему на алгебре so(4) и предпошлем динамическому описанию ряд следствий из теории алгебр Ли. В зависимости от динамического происхождения рассматриваемых уравнений удобнее пользоваться различными системами переменных, которые мы обозначаем (М,р) или К, S), связанных между собой простыми соотношениями  [c.179]

Мы покажем [10, 81] как уравнения движения N вихрей на сфере радиуса Д можно представить в гамильтоновой форме с вырожденной пуассоновой структурой, являющейся нелинейной.  [c.37]

В рамках этого круга идей в работах Ковалевской, Клебша, Чаплыгина, Стеклова и других авторов был решен ряд новых задач механики, некоторые из которых весьма нетривиальны. Стоит отметить, что в этих классических работах не использовалась гамильтонова структура уравнений движения. Условия интегрируемости и само интегрирование уравнений динамики основаны на методе интегрирующего множителя Эйлера — Якоби. Напомним, что для этого автономная система п дифференциальных уравнений должна иметь интегральный инвариант и обладать п —2 независимыми интегралами. Из-за этого обстоятельства не была замечена интегрируемость ряда задач динамики. Самый яркий пример—задача  [c.11]


Рассмотрим случай, когда потенциал V(а, /3, 7) квадратично зависит от направляющих косинусов. Эта задача изучалась Ф. Бруном еще в прошлом столетии [198], но наиболее полные результаты были получены не так давно [18, 19, 20, 21, 146]. Брун нашел два независимых интеграла движения, но не смог установить интегрируемость. Для этого необходимо воспользоваться гамильтоновой структурой уравнений движения и теоремой Лиувилля (вместо теории последнего множителя, которую обычно использовали для интегрирования в динамике твердого тела в 19 веке) и инволю-тивностью двух недостающих первых интегралов. Хотя интегрируемость волчка в п-мерном случае в квадратичном потенциале была формально изучена в [146] (А. Г. Рейман, М. А. Семенов-Тян-Шанский), наиболее законченные результаты имеются в работах О. И. Богоявленского [18, 21]. В них также содержатся различные физические интерпретации этой задачи.  [c.212]

Может случиться, что в новых переменных система уравнений (1) будет иметь более простую структуру и ее интегрирование будет проще интегрирования исходной системы. В новых переменных уравнения движения могут уже не быть гамильтоновыми. Мы, однако, будем далее рассматривать только такие преобразования (4), которые не нарушают гамильтововой формы уравнений движения. Это будут канонические преобразования. Ниже мы дадим определение канонических преобразований, получим критерии каноничности и укажем способ нахождения функции Гамильтона, отвечающей преобразованным уравнениям.  [c.338]

Гамильтонова механическая система задается четномерным многообразием ( фазовым пространством ), симплектической структурой на нем ( интегральным инвариантом Пуанкаре ) и функцией на нем ( функцией Гамильтона ). Каждая однопараметрическая группа симплектических диффеоморфизмов фазового пространства, сохраняющих функцию Гамильтона, связана с первым интегралом уравнений движения.  [c.142]

Таким образом, уравнения Пуанкаре и Пуанкаре - Четаева — это лишь удобный аппарат для записи в произвольной системе переменных, в том числе избыточной, уравнений движения системы в лагранжевой и гамильтоновой форме. При этом возможность такого представления связана с существованием у системы тензорного инварианта — пуассоновой структуры, координатная запись которой зависит от выбора переменных, причем для избыточных переменных пуассонова структура будет заведомо вырождена. Следует сказать, что лагранжева система, функция Лагранжа которой невырождена по скоростям, заведомо обладает этим тензорным инвариантом.  [c.38]

Систематическое исследование уравнений движения тяжелого гироскопа твердого тела в параметрах Родрига-Гамильтона (а также Кэли-Клейна) развивается в замечательной книге Ф. Клейна, А. Зоммерфельда Теория волчка [238] (разумеется, что основные результаты в этом вопросе принадлежат Ф. Клейну, см. также [237]). В то время еще не была известна гамильтонова структура этих уравнений (как уравнений на алгебре Ли), тем не менее эти параметры оказались удобными как для явного интегрирования в эллиптических функциях, так и для анализа различных частных решений. Близкую к кватернионам систему избыточных переменных (типа плюккеровых координат) в своей книге Геометрия динамы исследовал Э. Штуди. Он также вычислил в этих координатах кинетическую энергию твердого тела.  [c.47]

Вводные замечания. Задача трех или большего числа тел считается по справедливости одной из самых знаменитых проблем в математике. Тем не менее, до недавнего времени весь интерес в этой проблеме был направлен на формальную сторону вопроса и в частности на формальное решение посредством рядов. Пуанкаре был первым, получившим блестящие качественные результаты, касающиеся в особенности специального предельного случая так называемой ограниченной проблемы трех тел , рассмотренной впервые Хиллом. Что касается общей проблемы, то главные результаты, полученные Пуанкаре, следующие во-первых, он установил существование различных типов периодических движений методом аналитического продолжения во-вторых, он показал, что в силу самой структуры дифференциальных уравнений проблемы тригономстричсскис ряды могут быть полезными, и, наконец, в-третьих, он указал на пригодность этих рядов, как асимптотических. Все эти результаты остаются справедливыми не только для проблемы трех тел, но и для всякой гамильтоновой системы. К несчастью, в его исследованиях всегда имеется вспомогательный параметр //, причем при /X = О система будет специального интегрируемого типа. Таким образом, возникающие трудности (по крайней мере, отчасти) более зависят от особой природы интегрируемого предельного случая (когда два из трех тел имеют массу 0), чем присущи самой проблеме.  [c.259]


Уравнения (1.5.1), приводящие к возникновению странного аттрактора, зависят обычно от некоторого параметра (аналогичного величине возмущения в гамильтоновых системах), изменение которого меняет характер движения. На примерах модели Хенона— Хейлеса и ускорения Ферми мы видели, что в гамильтоновых системах при увеличении возмущения траектории из регулярных становятся стохастическими. Подобно этому, и в диссипативных системах при изменении параметра возможен переход от периодического движения к хаотическому на странном аттракторе. Во гао-гих случаях такой переход происходит путем последовательного удвоения периода движения вплоть до некоторого критического значения параметра, за которым структура аттрактора изменяется и движение становится хаотическим. Дальнейшее увеличение параметра может привести к обратному процессу или к появлению простого аттрактора другой симметрии. Еще одна интересная особенность таких систем заключается в том, что обычно можно найти поверхность сечения, на которой движение сводится приближенно к необратимому одномерному отображению. Необратимость означает здесь многозначность обратного отображения. Такие отображения возникают во многих физических задачах и будут подробно рассмотрены в 7.2.  [c.76]

Пример 13. Движение материальной точки единичной массы в центральном поле может быть описано гамильтоновой системой в R =R x xR y со стандартной симплектической структурой и функцией Гамильтона Н(у, x) = y l2+U( x ). Зафиксируем постоянный вектор кинетического момента xXy—Vi (ц О). Можио считать, что ц=свз, где вз=(0, О, 1), ОО. Множество уровня Мс задается уравнениями дсз=1/з=0, Х У2 — Х2Ух=с. Ясно, что вектор fl инвариантен относительно группы поворотов 50(2) вокруг оси с единичным вектором >з. Для того, чтобы провести факторизацию по этой группе, введем в плоскости / = дгь J 2 полярные координаты г, <р и со-  [c.107]


Смотреть страницы где упоминается термин Гамильтонова структура уравнений движения : [c.96]    [c.285]    [c.169]    [c.244]    [c.234]   
Смотреть главы в:

Фундаментальные и прикладные проблемы теории вихрей  -> Гамильтонова структура уравнений движения



ПОИСК



Гамильтон

Гамильтона уравнения

Гамильтона уравнения движения

Зэк гамильтоново



© 2025 Mash-xxl.info Реклама на сайте