Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тугоплавкие материалы - Обработка

Кроме того, для изготовления таких деталей часто применяют жаростойкие и нержавеющие стали, тугоплавкие материалы, механическая обработка которых затруднительна. Поэтому применение электроэрозионных методов для образования малых отверстий весьма целесообразно и эффективно.  [c.160]

Нагрев обрабатываемого материала электронным лучом осуществляется в результате выделения энергии в поверхностных слоях вещества и дальнейшей теплопередачи ее во внутренние слои. Высокая интенсивность ввода энергии в вещество при электронно-лучевой обработке приводит к развитию значительных поверхностных температур, уровень которых может превышать точку кипения даже самых тугоплавких материалов.  [c.113]


Перспективным и уже нашедшим широкое применение методом является электроискровой, разработанный в 1943 г. советскими учеными Б. Р. и Н. И. Лазаренко. Электроискровая обработка сделалась незаменимым технологическим процессом, особенно при изготовлении деталей из твердых сталей с отверстиями малого диаметра или с криволинейной осью. Электроискровым методом получают тугоплавкие материалы в виде тончайших порошков, из которых прессуют сложные детали (например, червячные передачи). Достаточно сказать, что чистота электроискровой обработки поверхности достигает 4—7-го классов, а скорости съема со стальной заготовки — 600—800 мм 1 мин [21].  [c.126]

Наиболее часто в плазменном металлизаторе применяется аргон. Для снижения стоимости процесса обработки может быть использован азот. С целью увеличения температуры в центре для расплавления более тугоплавких материалов добавляют небольшое количество водорода. При опасности возникновения водородного охрупчивания вместо водорода используют гелий.  [c.80]

Следует отметить, что при обработке рассматриваемых тугоплавких материалов наблюдаются нередко иные закономерности, чем при обработке обычных сталей и сплавов.  [c.39]

Грубые режимы обработки отличаются не только большой энергией импульсов, но и малой частотой их повторения, т. е. они характеризуются большой скважностью, чистовые режимы — наоборот. Для обработки деталей из твердых сплавов и других тугоплавких материалов, склонных к образованию трещин при быстром охлаждении, рекомендуются импульсы не только малой продолжительности, но и большой скважности. При обработке деталей из стали для обеспечения высокой производительности нужно применять более продолжительные импульсы с малой скважностью, что и достигается при электроимпульсной обработке. Снижение производительности при тонкой обработке, отличающейся малой энергией, единичных импульсов, частично компенсируется увеличением частоты их следования. При этом скважность может еще более снижаться, если продолжительность импульсов остается прежней, или оставаться без изменений, если продолжительность импульсов сокращается.  [c.147]

Химическая обработка 421 Покрытия из тугоплавких материалов 431 Полировальные круги 583 Полировальные пасты 583, 584 Полирование 583  [c.451]

Развитие современной техники сопряжено с повышением рабочих температур механизмов и машин и технологических процессов обработки материалов. В ряде случаев традиционные машиностроительные материалы не могут обеспечить работоспособность при высоких температурах подвижных (трение скольжения) и неподвижных разъемных сопряжений деталей машин. Это потребовало разработки и применения новых жаропрочных и тугоплавких материалов и покрытий, свойства которых при высокотемпературном трении и контактировании изучены еще недостаточно. Для изучения трения и контактного взаимодействия при высоких температурах необходимо создание специальных испытательных установок и разработка соответствуюш,их методик исследования.  [c.3]


Устройство горелок для получения плазменной дуги (рис. 5.12, б) принципиально не отличается от устройства горелок первого типа. Только дуга горит между электродом и заготовкой 7. Для облегчения зажигания дуги вначале возбуждается маломощная вспомогательная дуга между электродом и соплом. Для этого к соплу подключен токопровод от положительного полюса источника тока. Как только возникшая плазменная струя коснется заготовки, зажигается основная дуга, а вспомогательная выключается. Плазменная дуга, обладающая большей тепловой мощностью по сравнению с плазменной струей, имеет более широкое применение при обработке материалов. Ее используют для сварки высоколегированной стали, сплавов титана, никеля, молибдена, вольфрама и других материалов. Плазменную дугу применяют для резки материалов, особенно тех, резка которых другими способами затруднена, например меди, алюминия и др. С помощью плазменной дуги наплавляют тугоплавкие материалы на поверхности заготовок.  [c.240]

Улучшение обрабатываемости материалов механической обработкой достигается предварительной термической обработкой заготовок, применением инструмента из твердых сплавов и сверхтвердых материалов, подбором и использованием смазочно-охлаждающих жидкостей, оптимизацией режимов резания, легированием конструкционных сплавов. Например, легирование сталей серой, селеном, свинцом и другими металлами, облегчающими процесс резания. Обработка таких труднообрабатываемых материалов, как жаропрочная сталь и тугоплавкие сплавы, на оптимальных режимах малопроизводительна (см. табл. 31.1). Поэтому детали из этих материалов обрабатывают методами физико-химической обработки.  [c.593]

Более эффективно наружное плакирование, которое сопровождается объемной пластической деформацией метаемой трубы и приводит к упрочнению материала. Если высокоскоростная деформация стальных труб происходит при сварке с нагревом выше температур фазовых превращений, то в структуре сталей наблюдается образование мартенсита деформации (как и при высокочастотной термомеханической обработке). Это приводит не только к повышению прочности, но и к сохранению пластичности и вязкости материала. Для сварки взрывом с нагревом хрупких тугоплавких материалов (Сг, Мо, W) характерно формирование мелкозернистой ячеистой структуры с высокими физико-механическими свойствами.  [c.424]

Ротационная вытяжка представляет собой процесс формоизменения плоских или полых вращающихся заготовок по профилю оправки с помощью перемещающейся деформирующей нагрузки. Процесс характерен наличием локального очага деформации, образующегося в результате воздействия давильного элемента (ролика) на материал заготовки. Реализация локализированной деформирующей нагрузки при ротационной вытяжке позволяет получать за один проход высокие степени деформации (до 80 %), что делает процесс экономически выгодным по сравнению с другими способами изготовления деталей, например штамповкой. С помощью ротационной вытяжки получают полые детали с постоянной и переменной толщиной стенки, имеющие широкий диапазон размеров (диаметром до 5 м, толщиной стенки до 40 мм и длиной до нескольких метров) и различной формы. Ротационную вытяжку можно успешно использовать для обработки как обычных сталей и сплавов, так и труднодеформируемых и тугоплавких материалов.  [c.234]

Обработка давлением сплавов с карбидным упрочнением. Сплавы ниобия, упрочненные карбидной фазой, используются в качестве конструкционных материалов. Основную часть полуфабрикатов и изделий из них получают с помощью обработки давлением исходного слитка. Технология обработки давлением ниобия и сплавов на его основе, преимущественно однофазных, освещена в ряде работ и наиболее полно в работах [75—79]. Некоторый анализ условий пластической деформации тугоплавких материалов и в частности сплавов с дисперсными тугоплавкими фазами проведен в работе [80].  [c.196]


В авиационной технологии производится обработка отверстий в очень широком диапазоне диаметров /)(1) = 0,1...100 мм) и глубин /(до 00 )). Отверстия малых диаметров ( ) 0,5 мм) в жаропрочных, титановых и тугоплавких материалах стандартными сверлами обработать не удается и поэтому применяют физико-химические методы (см. гл. 11).  [c.88]

Ниже приведены, но данным работ [2, 32], некоторые свойства тугоплавких металлов и соединений в широком интервале температур. Эти зависимости могут быть использованы в основном лишь как оценочные, хотя они получены при обобщении достаточно большого фактического материала. Как известно, на поведение тугоплавких материалов при высоких и при обычных температурах существенно влияют особенности структуры, наличие примесей, условия обработки и испытаний, масштабный фактор, поэтому в каждом конкретном случае возможны отклонения от обобщенных значений измеряемых характеристик.  [c.15]

Электроннолучевой метод применяется для резания самых тугоплавких материалов (тантал, титан, вольфрам, кварц, керамика) и обработки деталей из материалов трудно обрабатывающихся резанием. Края обработанной поверхности получаются ровные и структура смежных слоев при этом не изменяется.  [c.642]

Наибольшие износы электрода-инструмента имеют место при обработке твердых сплавов, молибдена и некоторых других тугоплавких материалов.  [c.107]

При обработке углеродистых, инструментальных сталей и жаропрочных сплавов на никелевой основе используют графитовые и медные ЭИ. Для черновой ЭЭО заготовок из этих материалов применяются ЭИ из алюминиевых сплавов и чугуна, а при обработке отверстий — ЭИ из латуни. При обработке твердых сплавов и тугоплавких материалов на основе вольфрама, молибдена и ряда других материалов широко применяют ЭИ из композиционных материалов, содержащих медь, вольфрам и другие компоненты, так как при использовании графитовых ЭИ не обеспечивается высокая производительность из-за низкой стабильности электроэрозионного процесса, а ЭИ из меди имеют большой износ, достигающий десятка процентов, и высокую стоимость.  [c.35]

Лазерная обработка сверхтвердых и тугоплавких материалов, керамики, стекол. Завод алмазных инструментов в Рославле стал ныне одним из крупнейших заводов лазерной технологии. Там создают алмазные резцы, напильники, фрезы, а также алмазные волоки — инструменты для производства тонкой и сверхтонкой проволоки. И во всех этих случаях для обработки алмаза используется лазерный луч. Луч лазера пробивает отверстие в алмазе за доли секунды, тогда как при сверлении ультразвуком на эту операцию уходит 6 ч.  [c.49]

На получистовых режимах (/ср = 10. .. 100 А) производительность при обработке тугоплавких материалов достигает максимума при /шах/ти=5. .. 8 А/мкс. ЭЭО тугоплавких металлов производят иа прямой полярности, при повышенной скважности и большом отношении /тах/ Ги.  [c.86]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]

Для обработки тугоплавких и жаропрочных материалов применимы электрофизические и электрохимические методы обработки аналогичных литых материалов.  [c.441]

Сложность механической обработки тугоплавких металлов, как и нержавеюш,их и жаропрочных сталей и сплавов, определяется прежде всего интенсивным износом инструмента. Высокие температуры рабочих поверхностей инструмента и зависимость их от режима обработки оказывают различное влияние на природу износа, меняется и его интенсивность. В свою очередь, от износа зависит количество выделяюш,егося тепла и его распределение, а влияние различных элементов режима обработки на износ при этом может резко изменяться. При точении молибденового сплава BMI со скоростью 40 м/мин стойкость резца уменьшается с ростом подачи при скорости 30 м/мин подача на стойкость не влияет, а при еще меньшей скорости увеличение подачи ведет даже к повышению стойкости [46]. Применение смазочно-охлаждающих. жидкостей (СОЖ) при обработке жаропрочных материалов может дать повышение стойкости твердосплавного инструмента до 10 раз и совсем не сказывается и даже снижает стойкость инструмента из быстрорежущей стали. При работе без СОЖ производительность резцов с пластинками из твердых сплавов может быть даже ниже, чем резцов из быстрорежущей стали.  [c.39]

По своим свойствам — твердости, тугоплавкости, электро- и теплопроводности, малой летучести, высоким коррозионным свойствам на воздухе — родий является очень хорошим материалом для прецизионных контактов, но он слишком дорог и не поддается механической обработке, поэтому его применяют только в виде электрохимических покрытий.  [c.302]

Эта сложность требований, предъявляемых к современным материалам, вообще делает невозможной использование традиционных металлических сплавов, совершенствование которых неспособно обеспечить принципиальное и резкое повышение эксплуатационных характеристик при высоких и низких температурах, в условиях сильных ударных, знакопеременных нагрузок, тепловых ударов, действия облучения, высоких скоростей. Отсюда основным направлением современного материаловедения является создание композиционных, сложных материалов, компоненты которых вносят в них те или иные требуемые свойства. Типичным примером являются композиционные жаропрочные сплавы, состоящие из достаточно пластичной основы (матрицы), упрочненной непластичными тугоплавкими составляющими в форме волокон, нитевидных кристаллов, тонких включений либо поверхностно упрочненной покрытиями. Практическое создание таких сложных материалов обычно невозможно традиционными методами сплавления с последую-, щим литьем и механической обработкой, так как входящие в их состав компоненты плохо совместимы, имеют не только разные температуры плавления, но и вообще различную природу. Это вызывает необходимость использования методов порошковой металлургии, заключающейся в смешении разнородных и разнотипных материалов в форме порошков, прессовании из смесей заготовок нужных форм и спекания этих заготовок для их упрочнения и формирования требуемой структуры.  [c.77]


Продолжительность импульсов определяет не только температуру, развивающуюся в канале разряда, глубину распространения тепла в электроде, но и величину гидродинамических сил в межэлектрод-ном промежутке, от которых зависит удаление продуктов эрозии из зоны обработки. Импульсы малой длительности (до десятков микросекунд) пригодны для обработки твердых сплавов и других тугоплавких материалов, большой продолжительности (до нескольких тысяч микросекунд) — для обработки стали и вообще материалов со сравнительно небольшой температурой плавления. Применение импульсов большой продолжительности при обработке твердых сплавов нежелательно не только из-за невысокой температуры в канале разряда, но и по той причине, что быстрое охлаждение твердого сплава при прогреве его на значительную глубину может вызвать термические напряжения и образование микротрещин. При большой продолжительности импульсов, когда преобладает не взрывное испарение металла, а происходит перевод ею в капельно-жидкое состояние, ухудшается выброс отходов из зоны обработки и,  [c.146]

В качестве электродов для электроконтактной обработки наибольшие перспективы открьтаются перед композиционными материалами, состоящими из пластичной основы (например,меди) и тугоплавкой твердой фазы. Наибольшей эрозионной стойкостью обладает компози ция медь — 10 % Ti (рис. 105) [268], так как известно, что с повыше нием температуры плавления добавок эрозионная стойкость компози Щ10НН0Г0 материала возрастает. Карбид титана имеет самую высокую температуру плавления среди недефшщтных тугоплавких материалов, поэтому композиция u Ti , по-видимому, будет основой при создании цовых электродных материалов для электроконтактной обработки.  [c.200]

В настоящее время в практике обработки высокопрочных, твердых и тугоплавких материалов начинает применяться так называемое виброрезание. Режущему инструменту принудительно сообщают низко- и высокочастотные или ультразвуковые колебания с малой амплитудой. При этом снижаются силы резания и уменьшается сопротивление трению. Влияние этих колебаний на процессы, происходящие в технологической системе, изучено еще недостаточно глубоко. Это не дает возможности точно определить область их целесообразного и эффективного применения и в особенности при обработке жаропрочных, титановых и тугоплавких сплавов, а также керамических и композиционных материалов.  [c.60]

Карбидосталн — это новый класс инструментальных материалов для обработки деталей из труднообрабатываемых материалов, изготовляемых методами порошковой металлургии. Это композиционный материал, в котором зерна тугоплавких карбидов (преимущественно Ti ) равномерно распределены в связке из легированной стали.  [c.43]

Особо твердые инструментальные материалы созданы на основе нитрида бора и нитрида кремния. В них нет пластичной металлической связки. Изделия из этих материалов изготавливают либо с помощью взрыва, либо в условиях сверхвысоких статических давлений и высоких температур. Изделия из нитридов бора и кремния используют в качестве материала иденторов (наконечников) для измерения твердости тугоплавких материалов в интервале температур 700—1800 °С, как абразивный материал и в качестве сырья для изготовления сверхтвердых материалов, применяемых для оснащения режущей части инструментов для обработки закаленных сталей, твердых сплавов, стеклопластиков, цветных металлов. Они обладают высокой твердостью HRA 94—96), прочностью, износостойкостью, теплопроводностью, высокой стабильностью физических свойств и структуры при повышении температуры до 1000 °С. Их преимуществом является доступность и дешевизна исходного продукта, благодаря чему они используются для замены вольфрамсодержащих твердых сплавов.  [c.204]

МР-6 (ТУ 38 УССР 201290—79) — светло-коричневое, средневязкое минеральное масло, содержащее присадки серы и хлора рекомендуется для обработки труднообрабатываемых и тугоплавких материалов  [c.10]

При обработке углеродистыхиинструментальных сталей, а также жаропрочных сплавов на никелевой основе широко используются углеграфитовые и медные ЭИ Для черновой обработки этих материалов могут применяться ЭИ из алюминиевых сплавов и чугуна, а при обработке сквозных отверстий — из латуни. В случае обработки твердого сплава и тугоплавких материалов на основе вольфрама, молибдена и ряда других материалов наиболее широко, особенно в последние годы, применяются прессованные ЭИ из порошка, содержащего медь и вольфрам Это вызвано тем, что при обработке этих материалов использование углеграфитовых ЭИ не обеспечивает высокой производительности из-за низкой стабильности электроэрознонного процесса, а ЭИ из меди имеет большой износ, достигающий десятка процентов, и высокую стоимость  [c.27]

Физическая сущность лучевых методов обработки (электронного и светового) сводится к местному расплавлению и испарению материала обрабатываемой заготовки под влиянием очень большого количества тепла, выделяющегося в узколокальном пятне под действием резко сфокусированного пучка быстродвигающихся электронов (при электронной) или квантов световой энергии (при световой обработке). Процессы позволяют обрабатывать металлы и неметаллы. Лучевые методы применяют для плавки весьма тугоплавких материалов в небольших объемах, а также для нанесения покрытий на детали путем испарения наносимого материала и осаждеиия его на поверхность детали. Плотность энергии, достигаемая при обработке электронным и световым методами, составляет 5 10 вт/см при электронном пучке и 10 —101 вт/слР при световом луче.  [c.147]

ЭЭО на прямоугольных импульсах характеризуется следующим. Возможна обработка пакетами высокочастотных импульсов. В случае заготовок из конструкционных и инструментальных сталей, жаропрочных, нержавеющих, износостойких, коррозионностойких сталей и сплавов, магнитных и алюминиевых сплавов применяют обратную полярность. Для обработки вольфрамотитаиокобальтовых сплавов,. меди и тугоплавких материалов лучше использовать прямую полярность.  [c.73]

При обработке конструкционных, инструментальных, нержавеющих и других сталей, жаропрочных сплавов и тугоплавких материалов все же в некоторых случаях применяют режимы обработки, при которых возникают микротрещнны. Появившийся дефектный слой затем удаляют последующей ЭЭО на более мягких режимах или другими методами (резанием, электрохимической обработкой и др.).  [c.106]

Существеным при этом является температура плавления избь[-точной фазы. Она должна быть более высокой, чем пгемпература плавления основного твердого раствора. Разрушение скелета или сетки избыточной фазы при горячей обработке давлением, а также образование изолированных частиц этой фазы приводит к понижению жаропрочности литых сплавов. Из рассмотренного следует, что создание жаропрочных материалов сводится к тому, чтобы тем или иным путем уменьшить величину и скорость разупрочнения сталей и сплавов при повышении температуры. Это достигается путем комплексного легирования сплавов тугоплавкими металлами с получением отливок с заданной кристаллической структурой.  [c.48]

При плавке металлов в ИПХТ-М не только исключается загрязнение расплава материалами тигля, но и возможна эффективная очистка расплава от неметаллических включений, внесенных в расплав ранее. Эти включения, как правило в виде тугоплавких соединений (окислов, нитридов, карбидов и т.п.), за счет циркуляции расплава периодически выносятся на относительно холодную стенку тйгля, оседают на ней, и, таким образом, после кристаллизации слитка, оказывается в его поверхностной части, что позволяет удалить их механической обработкой [49].  [c.56]


Ранее считалось, что соединение покрытия с основным металлом при большинстве способов напыления происходит за счет механических связей [61], что предварительная подготовка поверхности, в частности пескоструйная обработка, приводяш,ая к повышению шероховатости, способствует усилению механических связей за счет заклинивания деформированных напыленных частиц в рельефе основного металла. В настоящее время полагают, что наряду с лгехани-ческим взаимодействием прочность соединения определяется установленными при напылении химическими связами п силами Ван-дер-Ваальса. Последние, однако, играют весьма малую роль в повышении прочности соединения. Что касается химического взаимодействия, то его значение может быть определяющим. При детонационном напылении высокую прочность соединения покрытия А120д с ниобием авторы [15] объясняют химическим взаимодействием частиц напыляемого материала и основного металла. Высокая прочность соединения наблюдается при нанесении тугоплавких покрытий на металлы с более низкой температурой плавления. При этом происходит перемешивание двух различных по химическому составу и свой-, ствам материалов, и достигается высокая прочность соединения покрытия с основным металлом. Предварительная пескоструйная обработка необходима не только для создания на поверхности металла нужного рельефа, но и для увеличения контактной площади и дополнительной активации цоверхности [15]. Выявление причин, определяющих уровень прочности соединения, будет, вероятно, основываться на систематических и глубоких исследованиях границы покрытие — основной металл с. привлечением современных методов изучения структуры.  [c.56]

Один из первых таких материалов состоял из 90% вольфрама и 10% меди. Он запатентован Адамсом в 1923 г. [1] и предназначен для работы при высоких температурах и высоких напряжениях. В1925 г. Джиллетти запатентовал композиционный материал медь— вольфрам для работы в качестве электродов при сварке сопротивлением. Имеется упоминание [8] о композиционном материале, состоящем из вольфрама и серебра или другого благородного металла, предназначенного для использования в электрических контактах. Вслед за этими разработками появилось множество других, касающихся использования композиционных материалов для электрических контактов, что сыграло значительную роль в развитии электрических приборов. Некоторые из этих тугоплавких композиционных материалов используют в устройствах для электрохимической и электроискровой обработки, все более широко применяющихся в промышленности в последнее время.  [c.416]

Последующая обработка давлением (холодная или горячая), а также дополнительная термическая обработка применяются для повышения плотности и свойств изделий. Так, для получения плотных и прочных материалов на железной и медной основе прибегают к холодному обжатию в прессформах, иногда с последующим отжигом. Штабики из тугоплавких металлов (W, Мо, Та) подвергаются горячей ковке и протяжке. В табл. 7 приведено изменение свойств металлокерамического железа после различных производственных операций. Дополнительной ооработкой можно получить для металлокерамических материалов такие же высокие механические свойства, как для обычных компактных металлов.  [c.546]

Особым видом обработки является последующая пропитка спечённого скелета из более тугоплавкого металла расплавленным более легкоплавким металлом (получение антифрикционных железосвинцовистых материалов, свинцовистых бронз, контактных вольфрамово-медных материалов и т. п.).  [c.547]


Смотреть страницы где упоминается термин Тугоплавкие материалы - Обработка : [c.200]    [c.3]    [c.233]    [c.451]    [c.837]    [c.294]    [c.99]    [c.17]    [c.255]    [c.189]   
Машиностроение энциклопедия ТомIII-3 Технология изготовления деталей машин РазделIII Технология производства машин (2002) -- [ c.132 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте