Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газ слабо разреженный

Теплопроводность разреженного газа слабо зависит от температуры (как и давления (табл. 15.2 и 15.3). Газ можно считать существенно разреженным до давления порядка 10 Па при комнатной температуре и до давления примерно 4-10 Па при Г 1000 К 8]. Для оценки теплопроводности разреженного газа применима формула Эйкена  [c.339]

В случае течений слабо разреженного газа граничные условия изменяются, и следует учитывать влияние скольжения и температурного скачка на поверхности обтекаемого тела (см. гл. XI).  [c.501]


Полученный нами вывод о том, что при обтекании пластины скольжение с точностью до не оказывает влияния на напряжение трения, верен только для плоской пластины при малых сверхзвуковых скоростях. В случае обтекания тела произвольной формы скольжение приводит к уменьшению поверхностного трения и, следовательно, сопротивления тела [15]. В настоящее время рассмотрены задачи об обтекании плоской пластины потоком слабо разреженного газа при больших сверхзвуковых скоростях. В этом случае следует учитывать взаимодействие пограничного слоя со скачком уплотнения, возникающим на передней кромке пластины поэтому скольжение и температурный скачок оказывают заметное влияние на характеристики обтекания.  [c.641]

Что означает, что газ является разреженным Каждая моле кула газа движется почти все время как свободная, взаимодействуя с другими молекулами лишь при редких столкновениях (которые отнюдь не предполагаются слабыми). Таким образом, мы считаем, что среднее расстояние между молекулами <г> — концентрация молекул их число в 1 м газа) велико по сравнению с радиусом действия межмолекулярных сил <г> й или Для столкновения нейтральных моле-  [c.5]

Явления в слабо разреженных газах  [c.67]

ЯВЛЕНИЯ В СЛАБО РАЗРЕЖЕННЫХ ГАЗАХ 69  [c.69]

Из-за гораздо большего, чем в плотном слое, термического сопротивления прослоек газа кондуктивный обмен уже не может нивелировать влияние свойств стенки при сложном обмене. Зависимость еэ(Тст, Тел) оказывается существенно различной для сильно и слабо отражающей поверхностей теплообмена. Это позволяет сделать вывод, что в разреженном слое вблизи поверхности теплообмена формируется профиль темпе- ратуры, который определяется главным образом радиационными свойствами системы и прежде всего величиной Гст.  [c.179]

При этом в одном и том же состоянии (на одном энергетическом уровне) может находиться не более двух протонов, различающихся лишь направлением спина. Это же относится и к нейтронам. Протоны и нейтроны в ядре обладают своим собственным набором воз-можны.ч состояний. Такая система микрочастиц, подчиняющаяся принципу Паули и полностью заполняющая все низшие энергетические уровни, называется вырожденным ферми-газом. В вырожденном ферми-газе, несмотря на сильное ядерное взаимодействие между нуклонами, столкновения нуклонов запрещены, и они ведут себя так, как если бы взаимодействие между ними было слабым. В самом деле, нуклон I мог бы испытать столкновение с некоторым нуклоном 2 и передать последнему часть своей энергии и импульса. При этом нуклон 2 перешел бы на более высокий свободный энергетический уровень, а нуклон У в соответствии с законом сохранении энергии должен был бы перейти на более низкий энергетический уровень (рис. 55). Однако все нижележащие уровни согласно принципу Паули имеют ограниченное число мест, и все они заняты, поэтому нуклон 1 не может перейти на занятые нижние уровни. Это означает, что соударения нуклона / с нуклоном 2 не произойдет, говорят, что оно запрещено принципом Паули. Таким образом, частицы вырожденного ферми-газа будут очень редко испытывать столкновения между собой, т. е. вырожденный ферми-газ в этом отношении напоминает разреженный газ с редким столкновением частиц. Эти соображения и дают основание для аналогии ядра с вырожденным ферми-газом.  [c.179]


Применим формз лу (99,5) к плоскости, ограничивающей занимаемую волной разрежения область пространства. При этом x/t будет представлять собой скорость движения этой границы относительно выбранной неподвижной системы координат. Скорость же ее относительно самого газа есть разность x/t — v и согласно (99,5) равна как раз местной скорости звука. Это значит, что границы волны разрежения представляют собой слабые разрывы. Картина автомодельного движения в различных конкретных случаях складывается, следовательно, из волн разрежения и областей постоянного течения, разделенных между собой поверхностями слабых разрывов (кроме того, конечно, могут иметься и различные области постоянного течения, разделенные между собой ударными волнами).  [c.513]

Определить наибольший возможный угол между слабыми разрывами, ограничивающими волну разрежения, при заданных значениях ui, i скорости газа и скорости звука на нервом из них.  [c.578]

Предположим сначала, что детонационная волна не соответствует точке Чепмена — Жуге. Тогда скорость ее распространения относительно остающегося за нею газа uj < С2. Легко видеть, что в таком случае за детонационной волной не могут следовать ни ударная волна, ни слабый разрыв (передний фронт волны разрежения). Действительно первая должна перемещаться относительно находящегося перед нею газа со скоростью, превышающей С2, а второй — со скоростью, равной -j в обоих случаях они перегоняли бы детонационную волну. Таким образом, при сделанном предположении оказывается невозможным уменьшить скорость движущегося за детонационной волной газа, т. е. невозможно удовлетворить граничному условию при л = 0.  [c.678]

Весьма слабый термомеханический эффект должен, строго говоря иметь место и в обычных жидкостях аномальным у гелия II является боль шая величина этого эффекта. Термомеханический эффект в обычных жидко стях представляет собой необратимое явление типа термоэлектрического эф фекта Пельтье (фактически такой эффект наблюдается в разреженных газах см. X, задача I к 14). Такого рода эффект должен существовать и в гелии II, но в этом случае он перекрывается значительно превосходящим его описанным ниже другим эффектом, специфическим для гелия 11 и не имеющим ничего общего с необратимыми явлениями типа эффекта Пельтье,  [c.710]

Нетрудно видеть, что с ослаблением волны сжатия скорость движения газа падает. В случае слабой звуковой волны газ за ее фронтом неподвижен, так как согласно равенству (7) при Р Рв и Pi рн получается и п 0. В действительности, как известно, звуковая волна состоит из правильно чередующихся областей сжатия и разрежения, причем газ за ее фронтом находится в очень слабом колебательном движении средняя поступательная скорость газовых частиц равна нулю.  [c.118]

Второй слабый скачок разрежения, который мы совместим с плоскостью СК, вызывает новое отклонение потока в сторону СВ и дальнейшее расширение газа, сопровождающееся увеличением скорости.  [c.157]

В газах благодаря большому числу столкновений между молекулами быстро устанавливается равновесное состояние. В разреженной плазме столкновения редки и вероятность установления равновесного состояния меньше, причем она падает с увеличением температуры. Плотная и, в частности,слабо ионизированная плазма должна находиться в состоянии термического равновесия. Разреженная, полностью ионизированная плазма может находиться длительное время в неравновесном состоянии в этой плазме термодинамическое описание состояния непригодно.  [c.229]

При большой скорости потока по мере увеличения разреженности газа скачки уплотнения становятся более слабыми, а при свободномолекулярном режиме они совсем исчезают.  [c.393]

Для предотвращения частых отключений котла автоматикой из-за слабой тяги необходимо, чтобы дымовая труба обеспечивала минимальную тягу в верхней части топки свыше 7 Па при наихудших условиях режима (в случае положительной температуры воздуха или при максимальном расходе газа на котел). Но следует помнить и то, что чересчур большого разрежения в топке котла также не следует допускать (оно не должно превышать 40 Па в самые сильные морозы), так как увеличение тяги выше нормы приводит к перерасходу топлива.  [c.138]


Именно этим объясняются отмеченные выше странности в характере зависимости < =/(ф). В самом деле, как указано при выводе уравнения Лапласа для скорости звука, любое слабое возмущение, в том числе и изменение давления, распространяется в сжимаемой среде со звуковой скоростью. Если в некоторый момент времени давление газа за соплом р несколько уменьшить, то волна разрежения распространится вдоль потока в направлении, противоположном направлению истечения потока вдоль сопла установится новое распределение давлений (при том же, что и раньше, значении давления газа перед соплом р ), и скорость истечения возрастет. При этом следует отметить, что волна разрежения будет распространяться вдоль сопла с относительной скоростью (a—w). Рассмотрим теперь случай, когда давление среды, в которую истекает газ, р , равно р и скорость истечения соответственно равна местной скорости звука при дальнейшем снижении давления среды ниже р волна разрежения не сможет распространиться вдоль сопла, так как ее относительная скорость a—w) будет равна нулю вследствие того, что в этом случае w=a. Никакого перераспределения давлений вдоль сопла не произойдет, и, несмотря на то, что давление среды за соплом снизилось, скорость истечения останется прежней, равной местной скорости звука на выходе из сопла. По образному выражению О. Рейнольдса, в этом случае поток в сопле не знает о том, что давление за соплом  [c.282]

Область течения разреженных газов, лежащая между областью континуума и областью свободно молекулярного течения, в настоящее время изучена очень слабо как в теоретическом, так и в экспериментальном отношениях.  [c.462]

Теорема Н. Е. Жуковского (23). 1-7-2. Метод малых возмущений (23) 1-8. Плоское сверхзвуковое течение газа при постоянной энтропии. ... 24 1-8-1. Слабые волны (24). 1-8-2. Плоские волны разрежения конечной интенсивности (24). 1-8-3. Диаграмма характеристик (25)  [c.7]

Рассмотрим теперь в той же постановке задачи вопрос о скорости распространения звука в двухфазной среде, состоящей из газа и мелких капелек. По определению скорость звука — это скорость распространения слабых возмущений. Скорость звука зависит от упругости среды, ее плотности и термодинамического процесса, происходящего при сжатии и разрежении.  [c.201]

Разделяющая линия контакта имеет в точке падения скачка О излом с вогнутым углом в сторону дозвуковой области, так что для дозвукового потока точка О есть точка торможения с нулевой скоростью и максимальным давлением газа в ней. Простая волна сжатия, образующаяся в сверхзвуковом потоке перед падающим скачком уплотнения вследствие передачи вперед повышения давления через дозвуковую область, преломляется при прохождении скачка и дает начало отраженному скачку, который у точки О взаимодействует с выходящей из этой же точки центрированной волной разрежения. Падающий скачок отражается в этой точке от границы как от свободной поверхности с давлением на ней, равным давлению торможения дозвукового течения. При этом взаимодействии бесконечно слабый отраженный скачок возникает уже в точке О и, постепенно усиливаясь, приобретает в бесконечности интенсивность, соответствующую отражению от твердой стенки без дозвукового слоя на ней.  [c.82]

Д. может наблюдаться не только на электронных, но и на колебательных переходах молекулы, однако значительно меньший. Если данный переход сопровождается одновременным изменением электрич. рп магп. т днпольных моментов, возникает круговой Д. Такая молекула наз. оптически активной (см. Оптическая активность). Круговым Д. обладают лишь нецентросимметричные молекулы [2]. Д. вещества, состоящего из анизотропных молекул, зависит от их отпосительного расположения. В газах или разреженных парах, где все ориентации равновероятны ( идеальный беспорядок ), а межмолекулярные взаимодействия слабы, ли-  [c.693]

Стандарт распространяется на дне группы рукавоз всасывающие, предназначенные для работы под разрежением, и нанорно-вса-сывающие, предназначенные для работы под давлением и разрежением. По каждой группе в зависимости от перекачиваемого вещества предусмотрены рукава пяти типов (для воды, бензина, керосина и минеральных масел, газов, слабых растворов кислот и щелочей, жидких пищевых веществ),  [c.125]

Из кинетических соображений следует, что в рассматриваемой части переходной области, соответствующей слабо разреженным газам, наряду с обычными линейными членами в выражениях компонент тензора вязких напряжений, векторов потока тепла и веществ, должны еще входить нелинейные комбинации производных скоростей по координатам (Д. Барнетт )). Отношение этих дополнительных членов к основным, соответствующим линейным законам, имеет как раз порядок величины M /Reoo или, согласно предыдущему, квадрата отношения 1/8 — длины свободного пробега к тшщ-ине пограничного слоя.  [c.655]

Упрощение системы Навье-Стокса обычно диктуется следующей простой идеей желательно построить уравнения, которые описьшали бы течения, содержащие области как с существенной, так и несущественной вязкостью, но допускающие более экономичные алгоритмы, чем алгоритмы для полных уравнений Навье-Стокса. Обоснование различных упрощений тесно связано со спецификой решаемой задачи. Например, при обтекании затупленного тела потоком слабо разреженно го газа, когда еще справедливы уравнения механики сплошной среды, можно использовать уравнения, в которых выброшены члены порядка 0(Яе ) и выше [56].  [c.131]


Решение. Пусть неподвижный газ находится слева, а волна разрежения — справа от слабого ( йзрыва (тогда последний движется влево). Без учета диссипации, в первой из этих областей имеем у == О, а во второй движение описывается уравнениями (99,5—6) (с обратным знаком перед с), при-  [c.517]

Разрывы, возникающие при распаде начального разрыва, должны, очевидно, двигаться от места их образования, т, е. от места нахождения начального разрыва. Легко видеть, что при этом в каждую из двух сторон (в положительном и отрицательном направлениях оси х) может двигаться либо одна ударная волна, либо одна пара слабых разрывов, ограничивающих волну разрежения. Действительно, если бы, скажем, в положительном направлении оси х распространялись две образовавшиеся в одном и том же месте в момент t = О ударные волны, то передняя из них должна была бы двигаться со скоростью большей, чем скорость задней волны. Между тем согласно общим свойствам ударных волн первая должна двигаться относительно остающегося за ней газа со скоростью, меньшей скорости звука с в этом газе, а вторая должна двигаться относительно того же газа со скоростью, превышающей ту же величину с (в области между двумя ударными волнами с = onst), т. е. должна догонять первую. По такой же причине не могут следовать друг за другом в одну и ту же сторону ударная волна и волна разрежения (достаточно заметить, что слабые разрывы движутся относительно газов впереди и позади них со звуковой скоростью). Наконец, две одновременно возникшие волны разрежения не могут разойтись, так как скорость заднего фронта первой равна скорости заднего фронта второй.  [c.520]

Рассмотрим сначала возможные режимы обтекания, когда сверхзвуковой поток газа подходит к краю тла, двигаясь вдоль одной пз его сторон, В соответствии с об-ндими свойствами сверхзвукового течения поток остается однородным вплоть до самого края угла. Поворот течения, переводящий его в направление, параллельное другой стороне угла, осуществляется в отходяш,ей от края угла волне разрежения, и вся картина движения складывается из трех областей, отделенных друг от друга слабыми разрывами Оа и Ob на рис. 108) однородный поток газа 1, движущийся вдоль стороны угла АО, поворачивает в волне разрежения 2, после чего снова движется с постоянной скоростью  [c.588]

Что касается области существования простой волны при обтекании вогнутого профиля, то вдоль линий тока, проходящих над точкой О, оно применимо вплоть до места пересечения этих линий с ударной волной. Липин же тока, пролодящие под точкой О, с ударной волной вообще не пересекаются. Однако отсюда нельзя сделать заключение о том, что вдоль них рассматриваемое решение применимо везде. Дело в том, что возникающая ударная волна оказывает возмущающее влияние и на газ, текущий вдоль этих линий тока, и таким образом нарушает движение, которое должно было бы иметь место в ее отсутствии. В силу свойства сверхзвукового потока эти возмущенггя будут, однако, проникать лишь в область газа, находящуюся вниз по течению от характеристики ОА, исходящей из точки начала ударной волны (одна из характеристик второго семейства). Таким образом, рассматриваемое здесь решение будет применимым во всей области слева от линии АОВ. Что касается самой линии ОА, то она будет представлять собой слабый разрыв. Мы видим, что непрерывная (без ударных волн) во всей области простая волна сжатия вдоль вогнутой поверхности, аналогичная простой волне разрежения вдоль выпуклой поверхности, невозможна.  [c.606]

Первый малый скачок скорости и давления произойдет па плоскости, следом которой является прямая СК-, так как давление при этом падает, то согласно теории скачков нормальная к плоскости С К составляющая скорости увеличивается ввиду неизменности тангенциальной составляющей скорости поток немного изменяет свое направление, отклоняясь от плоскости скачка разрежения в сторону, противоположную топ, в которую он отклонился бы в скачке сжатия. Итак, за плоскостью СК слабого скачка разрежения поток получил несколько большую скорость, немного отклонился в соответствующем направлении, а давление, плотность и температура газа слегка уменьшились. Возмущение, распространяющееся пз области более низких давлений, теперь уже должно быть ограничено новой характеристикой СК, которая вследствие отклонения потока и увеличения числа М располагается правее прежней характеристики СК. Левее характеристики СК никакие возмущения не проникают, поэтому вдоль линии СК, так же как перед этим вдоль липпи СК, параметры газа и скорость движения неизменны.  [c.157]

Как известно, конечные адиабатические скачки разрежения невозможны. Однако если разбить уголна бесконечно большое число бесконечно малых углов, то мы перейдем от рассмотренной выше условной схемы с малыми скачками разрежения к непрерывному расширению газа вместо конечного числа слабых скачков получается бесконечное число характеристик — пучок характеристик.  [c.158]

Следует отметить, что соотношение (8.233) получено в предположении локального равновесия на основе линейных феноменологических уравнений, содержащих переменные коэффициенты, и поэтому является общим для любых изотропных сред, в том числе и плотных, например для жидкостей и сильно сжатых газов. Однако в последних случаях при расчете избыточных функций и коэффициентов активности необходимо быть уверенным в том, что правильно измерен термодиффузионный фактор, значение которого может сильно искажаться даже очень слабой конвекцией в разделительной. ячейке. С учетом этого обстоятельства расчет избыточных функций плотных сред целесообразно проводить на основе данных для умеренно разреженных систем. Если известны объемные свойства и равновесные давления пара над л-сидкостью, то соответствующая экстраполяция не вызывает больших сложностей.  [c.235]

Рукава резино-тканевые с металлическими спиралями (ГОСТ 8496—57) подразделяются на две группы I — всасывающие для работы под разрежением и II — напорно-всасывающие — для работы под давлением и под разрежением. В каждой группе в зависимости от перекачиваемого вещества рукава подразделяют на типы Б — бензомас-лостойкие В — для воды Г — для воздуха, кислорода и нейтральных газов КЩ — для слабых растворов неорганических кислот и щелочей концентрацией до 20% II —для жидких пищевых продуктов.  [c.252]

АТОМНЫЕ СПЁКТРЫ — спектры поглощения и испускания свободных или слабо взаимодействующих атомов, возникающие при излучательных квантовых переходах между их уровнями энергии. А. с. наблюдаются для разреженных газов или паров и для плазмы. А. с. линейчатые, т. е. состоят из отд. спектральных линий, каждая из к-рых соот.ветствует переходу между двумя электронными уровнями энергии атома S и Sfi и характеризуется значением частоты v поглощаемого и испускаемого ал.-магн. излучения согласно условию частот Бора (см. Атомная физика) hv= —Si—Наряду с частотой, спектральная линия характеризуется волновым числом v/ (с — скорость света) и длиной волны к— h. Частоты спектральных линий выражают в с , волновые числа — в. m i, длины волн — в нм и мкм, а также в ангстремах (А). В спектроскопии волновые числа также обозначают буквой л=.  [c.153]

С, к. обладает сложной структурой, определяемой в осн. магн. полем Солнца. Вследствие чрезвычайной разреженности коронального газа даже слабые магн. поля, проникающие из фотосферы, оказывают существ, влияние на динамику и строение короны. Напряжённость маги, поля в короне не превышает, по-видиыому, 1—10 Гс.  [c.580]


Котел-утилизатор типа УС-2,6/39 (рис. 3.31) предназначен для использования теплоты нитрозных газов в схеме производства слабой азотной кислоты. Котел прямоточный, спиральные поверхности нагрева расположены в вертикальном газоходе цилиндрической формы, рассчитан на работу под разрежением. Подвод газов верхний. Газы последовательно омывают пароперегреватель, испарительную поверхность и экономайзер. Поверхности нагрева соединены последовательно и представляют собой пакеты, выполненные из двух соосных спиральных витков труб. Поверхности нагрева, испарительные и экономайзер-ные, выполнены из стали 20, пароперегревательные — из стали 12ХШФ.  [c.86]


Смотреть страницы где упоминается термин Газ слабо разреженный : [c.825]    [c.75]    [c.283]    [c.514]    [c.517]    [c.678]    [c.132]    [c.256]    [c.30]    [c.650]    [c.80]    [c.469]    [c.433]   
Механика жидкости и газа Издание3 (1970) -- [ c.825 ]



ПОИСК



Разреженный газ

Явления в слабо разреженных гвзах



© 2025 Mash-xxl.info Реклама на сайте