Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КЭП с матрицей железа

Схема последовательных стадий образования углеродных скоплений в виде фуллеренов в матрице железа.  [c.159]

Характерные признаки различных структурных составляющих после термического травления следующие аустенитная матрица — красновато-коричневая феррит — светло-желтый карбид ниобия — голубой фаза железо-ниобий — темно-коричневая ог-фаза — светло-желтая.  [c.153]


Травитель 123 [насыщенный водный раствор ацетата свинца]. Для разделения выделений с приблизительно одинаковой склонностью к окислению применяют электролитическое травление в растворе 123 при напряжении 4,5 В [122]. После такого травления структурные составляющие имеют следующие характерные цвета аустенитная матрица — голубой феррит — желтый карбид ниобия — желтый фаза железо-ниобий — желтый ог-фаза — коричневый.  [c.153]

Быстро растущий в последнее время интерес к поверхностям раздела станет понятным, если проследить историю развития композитов с металлической матрицей. Ранние работы по композитным материалам были направлены на выявление принципов, определяющих их эксплуатационные характеристики. Для этой цели, были удобны простые модельные системы. При выборе модельных систем руководствовались в основном совместимостью упрочните-ля и матрицы модельные системы состояли из матриц (нанример,. серебра или меди), химически малоактивных но отношению к упрочнителям (например, вольфраму или окиси алюминия). Хотя в этих работах и признавалась важная роль поверхностей раздела, модельные системы позволяли сравнительно легко получать тип поверхности, обеспечивающий необходимую передачу нагрузки от одного компонента композита к другому. В системах, представляющих большой практический интерес, матрицами служат обычные конструкционные материалы, такие, как алюминий, титан,, железо, никель они обладают большими реакционной способностью и прочностью, чем матрицы модельных систем. Повышенная реакционная способность затрудняет управление состоянием поверхности раздела, а для передачи больших нагрузок требуется более высокая прочность этой поверхности. Таким образом, состояние поверхности раздела становилось все более важным фактором по мере того, как интересы исследователей перемещались от модельных систем к перспективным инженерным материалам.  [c.12]

В упрочненных частицами металлах твердые частицы чаще всего увеличивают прочность и твердость, а пластичная матрица придает материалу вязкость и пластичность. В одном крайнем случае частицы в композитах способствуют увеличению предела текучести по сути пластичных металлов. Например, такую роль играют цементитные частицы (карбид железа) в малоуглеродистых сталях. В другом крайнем случае функция матрицы заключается в придании твердым и по существу хрупким материалам некоторой доли вязкости. Эту задачу, например, выполняет связующий металл в спеченных карбидах.  [c.58]


Как указывалось выше, в сталях феррито-перлитного класса основными факторами, ответственными за прочность, являются свойства ферритной матрицы, прочность которой определяется размером исходного аустенитного зерна, прочностью чистого железа, влиянием легирующих элементов и углерода, растворенных в феррите, и размером ферритного зерна. Вторым фактором, влияющим на предел прочности стали с ферритной матрицей, является упрочняющая карбидная фаза.  [c.212]

Учеными Киевского политехнического института исследована влияние титана на кинетику роста и свойства борированного слоя [14]. Добавки всего лишь 0,59% Ti полностью предотвращают рост аустенитного зерна в переходной зоне и матрице. Микротвердость боридной фазы FeB с увеличением содержания титана возрастала от 18,16 кН/мм2 в армко-железе до 22,08 кН/мм в сплаве с 1,64% Ti, а микротвердость фазы РезВ от 12,76 до 16,19 кН/мм соответственно. Установлена целесообразность дополнительного легирования 0,5—0,6% Ti сталей, подвергаемых борированию.  [c.42]

Свинец. Применение свинца в качестве конструкционного материала ограничено его низкими прочностными свойствами. Металл рекристаллизуется после механической деформации уже при комнатной температуре с образованием менее прочно связанных между собой крупных зерен. Рекристаллизации способствуют добавки висмута и олова, которые внедряются в твердый раствор, тогда как добавки меди, кальция и железа подавляют рекристаллизацию, образуя в свинцовой матрице интерметаллические соединения.  [c.36]

Мартенситно-стареющие стали - это высокопрочные стали с незначительным содержанием углерода. Упрочнение их достигается использованием элементов, заменяющих углерод никеля, кобальта и молибдена. Эти элементы обусловливают дисперсионное твердение мартенситной железо-никелевой матрицы при старении, отсюда и название сталей. Такие стали можно применять в станкостроении, самолетостроении, космической технике. Они идут на изготовление корпусов ракетных двигателей, деталей шасси самолетов, штампованных узлов и крепежных деталей [27].  [c.40]

Методом акустической эмиссии исследованы [57] внутренние напряжения в КЭП на основе железа, никеля, сплавов Fe—Ni и Fe—Zn, содержащих корунд. Принцип метода заключается в измерении интенсивности упругих волн, возникающих при нагружении образца с покрытием, которое вызывает образование микротрещин. Как в КЭП, так и в контрольных покрытиях возникало одинаковое число упругих волн наличие в матрице дисперсных частиц приводит к нарушению поля напряжений дислокаций и тем самым к ослаблению внутренних напряжений и уменьшению хрупкости.  [c.103]

Обычно в качестве наполнителя используют карбиды и окислы. Дисперсной фазой может быть, например, карбид вольфрама. Эта фаза может находиться в кобальтовой матрице, что позволяет получить композит, обладающий очень высокой твердостью. Такой материал идет на изготовление клапанов и фильер, предназначенных для волочения проволоки. При использовании карбида хрома получаются материалы, имеющие хорошую коррозионную стойкость и износостойкость, у которых коэффициент теплового расширения близок к коэффициенту теплового расширения железа. Поэтому композит с карбидом хрома используется для изготовления клапанов. Помимо указанных карбидов используют также карбид титана, что позволяет получить композиты с хорошей теплостойкостью. Такие материалы идут на изготовление деталей турбин, предназначенных для работы при высоких температурах.  [c.21]

Магнитные сплавы платины принадлежат к системе платина—железо и системе платина—кобальт. Оба сплава обладают очень большой коэрцитивной силой по намагниченности Нсм= = 520 кА м и сравнительно большой остаточной индукцией. Поэтому у них коэрцитивная сила по индукции Нсв н энергетическое произведение (ВН)тах достигают больших значений. Высокое значение объясняют наличием в сплавах платины однодоменных частиц Ре—Р( и Со—Р(, рассеянных в маломагнитной матрице. Оба сплава платины пластичны и легко поддаются всем видам механической обработки, однако из-за высокой стоимости их применение ограничено только микроминиатюрными магнитами.  [c.117]


Предложено методом порошковой металлургии готовить высококарбидные композиции, например, ферро-тита-наты или никель-титанаты, т. е. композиции на основе железа или никеля, содержащие 20—35 % карбида титана (Ti ) и, одновременно, 10—20% Сг, 2—15% Мо, иногда 1—1,5 % А1, 0,5—1 % Си или 10—30 % Со, при содержании в матрице (железе или никеле) порядка 0,2—0,65 % С. Эти материалы характеризуются повышенной прочностью, коррозионной и эрозионной стойкостью и жаростойкостью. По зарубежным данным [249] подобные материалы уже применяют в качестве штампов для коррозионноактивных пластмасс, при переработке керамики в электроиндустрии, для изготовления форм и режущих инструментов, используемых при работе со стеклянными расплавами, а также в качестве износостойких деталей для морской и реакторной техники и т. п.  [c.336]

Центром кристаллизации может быть один фуллерен или скопление фуллеренов. В случае одного фуллерена для достижения критического размера зародыша может быть несколько вариантов дальнейшего роста — или фрактальный рост, или случайное образование кластеров железа, что позволяет выйти за пределы критического размера, после чего наблюдается стабильный рост. Допуская фрактальный рост, предполагается, что пористость вокруг фуллерена будет выше, чем в среднем в матрице железа.  [c.101]

Другим источником напряжений третьего рода, охватывающих области меньшего, чем у дислокаций, порядка, являются внедренные атомы. В зависимости от характера взаимодействия внедренных атомов с атомами матрицы возможны как растяжения, так и сжатия решетки (рис. 2.1). Поля напряжений распространяются по всем направлениям примерно на одинаковые расстояния, в то время как вокруг дислокаций силовое поле имеет относительно значительную напряженность, по крайней мере в одном направлении. Установлено, что в закаленной стали возникают заметные искажения решетки и значительные напряжения третьего рода. Смещение атомов железа из узлов реп1етки составило 0,007 нм при содержании углерода 0,35% и 0,009 нм при 0,41% углерода.  [c.43]

Механизм упрочнения при старении сплавов различных систем состоит в том, что зоны предвыделений и образующиеся дисперсные частицы, имея по сравнению с матрицей различные упругие свойства, создают поля напряжений, взаимодействующие с дислокациями. В результате движение дислокаций через кристалл затормаживается и деформация сплава затрудняется с другой стороны, дисперсные частицы оказывают также сопротивление переползанию дислокаций (см. рис. 58). Например, у магнитотвердых сплавов структура, возникающая на различных стадиях старения в системе Fe—Ni—Al, способствует увеличению коэрцитивной силы, поскольку зоны предвыделений и области дисперсных выделений, будучи соразмерными с величиной доменов, задерживают переориентацию стенки Блоха в процессе перемагничи-вания сплава. Эффект старения наблюдают и используют не только в системах цветных сплавов (на основе алюминия, магния, титана, никеля), но и в сплавах на основе железа и, в частности, у стали, содержащей  [c.112]

Превращение РезС- -Ре(С)+Срр [здесь Fe( ) — насыщенный раствор углерода в железе] сопровождается при атмосферном давлении увеличением объема и относительно небольшим уменьшением термодинамического потенциала системы. Образующийся при этом распаде цементита углерод оказывает давление на металлическую матрицу сплава," которое обусловлено отставанием релаксационных процессов в металлической матрице от скорости роста графитовых включений, В некоторых случаях происходит рост чугуна под действием внутреннего давления.  [c.33]

Больщой диапазон значений /Су в железе (рис. 2.13) и в других ОЦК-металлах (табл. 5) свидетельствует о необходимости дополнительной модернизации предлагаемой новой модели объяснения зависимости (2.11), направленной на учет именно сегрегационных эффектов. В настоящее время только в общих чертах можно определить направление такой модернизации. Можно ожидать, что она должна заключаться в рассмотрении не просто эффекта стесненной деформации зерен в поликристалле, а в анализе деформации сложного композита. Композит этот должен состоять из узких пограничных слоев упрочненного сегрегациями металла, которые образуют прочный и жесткий сотовый каркас, а в качестве матрицы выступают внутренние объемы зерен.  [c.55]

Измерение макроскопических деформаций, при которых происходит отслоение частиц, показало, что отделение частиц от матрицы происходит в довольно широких интервалах величин деформаций и сильно зависит от типа частиц и матрицы. Так, частицы А12О3 в меди отделяются при деформациях, лежащих в интервале от 0,1 до 0,2 ВеО в меди — от 0,2 до 0,43 [393] карбидов железа в стали — от 0,4 до 0,6 [394]. Эти результаты были получены на основе модели релаксации напряжений частицами второй фазы, согласно которой зарождение пор несущественно зависит от размера частиц.  [c.196]

Показана возможность получения жаростойких покрытий на никелевые сплавы методом адсорбционно-физического отложения. Присутствие в составе покрытий элементов (железо, кремний), содержащихся в матрице, указывает на наличие процессов взаимодействия частиц дисперсной фазы с силикатной матрицей. Лит. — 6 назв., ил. — 3.  [c.266]

Источником паров хрома (-(-железа) слуишл феррохром марки ФХО10 (ГОСТ 4757—79), источником паров никеля — электролитический никель марки Н2 (ГОСТ 849—79). Пары хрома и никеля конденсировались на поверхности нагретой стальной. ленты и диффундировали в глубь матрицы. Обработка в парах хрома (феррохрома) и никеля выполнялась на опытной установке УМЛ-3.  [c.202]

Некоторые виды цементита, например третичный цементит или цементит, распределенный в структуре сталей после закалки, выявляются этим травителем лучше, чем с помощью травителей, после обработки которыми карбид железа выглядит темным на фоне окружающей светлой матрицы. Клемм применял его для выявления цементита и у-фазы в закаленных структурах. Для травления не требуется удалять деформированный слой феррит-ной матрицы. Изображение структуры получается более качественным, если сульфидный осадок на всей поверхности феррита одинаково ориентирован. Очень хорошо выявляли цементит с помощью тиосульфата натрия не только в незакалеиных, но и в закаленных и отпущенных сталях [42]. Этот метод позволяет наблюдать за развитием коагуляции цементита, выделяющегося в процессе отпуска. Естественно, для изучения небольшого числа мельчайших частиц цементита важное значение имеет оптическое разрешение.  [c.90]


Химическое своеобразие травителя, в первую очередь покрывающего сульфидным слоем а-твердый раствор (феррит) в сплавах железа, придает этому методу еще одно преимущество одновременно с цементитом можно идентифицировать -твердый раствор. Остаточный аустенит в закаленных со слишком высокой температуры, особенно в заэвтектоидных сплавах, покрывается сульфидной пленкой позднее, чем феррит. Аустенитная матрица в высоколегированных сталях ведет себя по отношению к раствору тиосульфата натрия пассивно аустенит при этом остается неокрашенным, т. е. светлым. После равномерного потемнения мартенсита в нелегированных закаленных углеродистых сталях присутствующий остаточный аустенит также остается светлым. Различия в ориентировке мартенситных игл хорошо наблюдаются только в том случае, если следы травления многократно сполировывают вручную на мягком сукне, а затем вновь повторяют его.  [c.90]

Травитель 86 [травители 39—48 (гл. VI)]. Цементит, легированный марганцем, и карбид марганца в высокомарганцовистых и углеродсодержащих сталях выявляют обычными реактивами на цементит (щелочной раствор пикрата натрия, перманганат калия и феррицианид калия). Однако они создают покрывающий слой на структуре матрицы (твердом растворе железо—марганец— углерод), формирование которого зависит от концентрации марганца (ликвации). Эти травители, по данным Пиллинга [69], используют для выявления дефектов.  [c.129]

Реактив Мураками (травитель 90) пригоден для травления вольфрамовых сталей в свежеприготовленном виде [70]. Карбиды и вольфрамиды в стали, содержащей, % Сг 5 W 18 С 0,6, в холодном растворе окрашиваются за 15—20 с в цвета от коричневого до черного матрица остается неокрашенной (рис. 54). Карбид вольфрама в кипящем растворе темнеет за 30 с, карбид железо-вольфрам — за 60 с. Особенно четкое окрашивание вторичного цементита (карбида) и цементитных" (карбидных) пластин перлита в вольфрамовых сталях вызывает раствор 5/ в горячем состоянии. Этот раствор при кратковременном травлении оказывает такое же действие, как и реактив 5 (рис. 55).  [c.134]

Хотя термическая обработка при 823 К приводит к резким изменениям структуры композитов и слой продукта реакции занимает значительную часть объема композита, деформация разрушения, согласно Паттнайку и Лоули [23], остается неизменной. Это означает, что предшествующее разрушению трещинообразование в слое алюминида железа слабо влияет на общую пластичность. Джонс [13] показал, что, хотя линии скольжения в нержавеющей стали исходят из вершин трещин, они развиваюпся в полосы деформации, пересекающие все сечение проволоки, раньше, чем деформация становится всеобщей и образуется шейка. На рис. 5 гл. 1 приведен заимствованный из работы Джонса [13] пример образования трещин в интерметаллидной фазе, которое предшествует скольжению в проволоке. С другой стороны, эти трещины в интерметаллидном соединении, по-видимому, приводят к трещино-об разованию в матрице.  [c.179]

Рост интереса к исследованию поверхностей раздела был связан с переходом от модельных систем к композитам, матрицами которых являются важные конструкционные металлы — алюминий, титан и металлы группы железа. Эти металлы обычно более химически активны, чем серебряные и медные матрицы исследованных модельных систем, таких, как Ag—AI2O3 и Си—W. Однако приведенные в настоящей главе данные по казывают, что известная реакционная способность может благоприятствовать достижению желательного комплекса механических свойств. Выше приводились примеры, когда определенное развитие реакции на поверхности раздела обеспечивало оптимальное состояние последней. Бэйкер [1] показал, что композиты алюминий—нержавеющая сталь обладают наилучшими усталостными характеристиками в условиях слабо развитой реакции, а Бзйкер и Крэтчли [2] установили то же самое для системы алюминий—двуокись кремния.  [c.180]

Вследствие деформирования поры могут также образоваться на поверхностях раздела между частицами и матрицей. Например, нарушение связи у включений в железе наблюдалось в работах [43, 76] микротреш,ины, связанные с поверхностями раздела между перлитом и ферритом, отмечены в [15, 43] зарождение пор около неоднородностей исследовано на внутренне окисленных медных сплавах [21, 67]. Обычно поры сначала образуются около частиц большего размера у полюсов и почти во всех случаях для образования пустот необходима пластическая деформация [82].  [c.63]

На рис. 10, е иллюстрируется тот вид роста усталостной трещины, при котором усталостная прочность композита будет низкой перед растущей в матрице усталостной трещиной вязкие волокна разрываются постепенно в результате роста в них усталостных трещин, а хрупкие волокна разрываются внезапно под действием высоких напряжений у конца исходной трещины. В работах [20, 39, 53] утверждалось, что подобный вид распространения усталостной трещины имеет место в композитах с волокнами большого диаметра (> 0,01 см). В [17], однако, обнаружено, что в случае наличия в железе волокон ГвзВ сечением 2-10 см такой вид роста трещин будет относительно безопасным. В тех, вязких бериллиевых волокнах (диаметром 0,01 см), которые расположены перед усталостными трещинами, лежащими в матрице, трещин усталости обнаружено не было (быть может, за одним исключением) [22].  [c.421]

Обработка образцов велась излучением лазера на неодимовом стекле с энергией импульса 9 Дж и длительностью 4 мс. При этом каждый локальный участок поверхности облучался различным количеством импульсов — от одного до пятнадцати. В результате воздействия лазерного излучения в техническом железе образовались зоны, отличающиеся по своим свойствам от исходного а-железа. Средняя глубина проникновения молибдена в матрицу составляет 450—500 мкм. При рассмотрении микрошлифов образцов обнаруживается четкая, неразмытая граница между зоной воздействия лазерного излучения и основным металлом. Данные измерения микротвердости зоны по ее глубине и в поперечном сечении на расстоянии от поверхности 200 мкм свидетельствуют о ее повышении в обработанной области в 1,5 раза по сравнению с микротвердостью а-железа. Результаты дюрометрического исследования показывают, что микротвердость по всей зоне воздействия излучения почти одинаковая, некоторое повышение ее наблюдается у нижней границы зоны. Повышение микротвердости и ее однородное распределение по всей области позволяют предположить наличие твердого раствора молибдена в а-железе. Рентгеноструктурный анализ показал наличие в обработанной зоне двухфазной структуры, которая имеет ОЦК решетки с различными периодами. Одна из них относится к а-железу, а вторая соответствует твердому раствору молибдена в а-железе с увеличенным межплоскостным расстоянием по сравнению с этим расстоянием в матрице. Вследствие того, что при растворении молибдена увеличиваются размеры кристаллической решетки железа, при точном измерении периода решетки можно определить содержание легирующего элемента в твердом растворе. Причем известно, что 1 % по массе молибдена увеличивает период решетки на 0,002 А.  [c.27]

Разработка сплавов типа САП и САС (спеченные алюминиевые сплавы) иовлекла за собой многочисленные попытки получения жаропрочных комлозици-он ных материалов на основе более тугоплавких матриц титана, молибдена, железа, кобальта, никеля, тантала, меди, хрома и ванадия. В качестве дисперс-. ной фазы в сплавы пробовали вводить окислы, карбиды, нитриды и бориды. Однако здесь многих ис-, следователей постигла неудача из-за отсутствия фундаментальных сведений о природе взаимодействия на границе разнородных компонентов.  [c.77]


Твердые сплавы видна в Германии и победит в Советском Союзе были созданы на основе порошкообразных компонентов. Твердость быстрорежущего сплава видиа 9,6—9,8 по шкале Мооса. Это почти твердость алмаза (по немецки ви диамант значит как алмаз ), В 1925 году в одной из лабораторий электротехнической фирмы Осрам был изготовлен сплав для производства вольфрамовых нитей, предназначенных для электролампочек. При протяжке вольфрамовой проволоки через специальную стальную матрицу— фильер матрица быстро приходила в негодность. Решили попробовать изготовить ее из смеси порошков Вольфрама (83—90 процентов), углерода (5,5—6,5 процента), кобальта (10—12 процентов) и железа (1—2 процента). Иногда кобальт заменял И никелем. После лрессования заготовки ее спекали по специальному режиму. Никель или кобальт сообщали сплаву вязкость, а соединение вольфрама с углеродом (карбид вольфрама) придавало ему твердость.  [c.78]

Созданы беэвольфрамовые керметы систем. карбид титана — железо и карбид титана — сталь. Керметы системы окись алюминия — вольфрам — хром применяют в качестве высокотемпературных эрозионностойких материалов, для изготовления специальных огнеупоров, защитных чехлов термопар, матриц для горячей экструзии труднодеформируемых металлов и сплавов и т. п. Изделия из этих керметов получают методом горячего прессования. Для снижения пористости в кермет добавляют до 1 процента Никеля.  [c.84]

Магнитные композиции состоят из основы (порошок ферро- или ферри-магнетика) и связующего (синтетические смолы или резина). Твердые и пластичные композиции называются магнитопластами, а эластичные — магнитоэластами. В зависимости от крупности магнитных частиц композиции могут быть магнитно-твердыми даже и в том случае, если используется порошок магнитно-мягкого материала, например железа. Для этого необходимо и достаточно, чтобы частицы были однодоменными. Если композицию выполняют из магнитно-твердого материала, например феррита, интерметаллического соединения редкоземельных металлов с кобальтом и, других, то частицы могут быть многодоменными. Однако для получения высоких магнитных свойств необходимо, чтобы частицы были монокри-сталлическими, а их расположение в немагнитной матрице (т. е. связующем) было упорядоченным (оси легкого намагничивания всех монокристаллов должны быть направлены одинаково).  [c.126]


Смотреть страницы где упоминается термин КЭП с матрицей железа : [c.114]    [c.121]    [c.153]    [c.218]    [c.54]    [c.197]    [c.164]    [c.204]    [c.89]    [c.127]    [c.139]    [c.178]    [c.259]    [c.101]    [c.112]    [c.126]   
Неорганические композиционные материалы (1983) -- [ c.178 ]



ПОИСК



Покрытия с матрицей из кобальта и железа

Покрытия с матрицей из металлов семейства железа



© 2025 Mash-xxl.info Реклама на сайте