Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо — ниобий

Титановые сплавы. Существующая довольно обширная номенклатура промышленных титановых сплавов как в СССР, так и за рубежом получена путем легирования титана следующими девятью элементами алюминием, молибденом, ванадием, марганцем, хромом, оловом, железом, цирконием, ниобием, причем место каждого элемента в этом перечне соответствует его важности и масштабу применения в качестве легирующей добавки к титану. Кроме того, в некоторых сплавах встречаются кремний и бор в качестве малых добавок (десятые и сотые доли процента).  [c.181]


Широкое применение получили титановые сплавы, классификация и химический состав которых регламентированы АМТУ 388— 57. В состав сплавов входят ванадий, вольфрам, молибден, марганец, хром, железо, тантал, ниобий.  [c.181]

Феррониобий, Сплав железа и ниобия ГОСТ 16773-71.  [c.257]

А1 Алюминий Ре Железо N0 Ниобий ) 5ш Самарий  [c.972]

Упрочнение аустенитно-боридных сталей достигается в основном в результате образования боридов железа, хрома, ниобия, углерода, молибдена и вольфрама.  [c.581]

Железо — углерод — ниобий  [c.536]

Ванадия, молибдена, ниобия, олова, железа, хрома, марганца. Молибденом, кремнием, марганцем, ниобием, цирконием.  [c.517]

Из тугоплавких материалов тантал является наиболее кислотостойким. Ниобий по кислотостойкости превосходит сплавы на основах железа и никеля, однако уступает танталу.  [c.534]

Изделия из алюминия и его сплавов паяют с припоями на алюминиевой основе с кремнием, медью, оловом и другими металлами. Магний и его сплавы паяют припоями на основе магния с добавками алюминия, меди, марганца и цинка. Изделия из коррозионно-стойких сталей и жаропрочных сплавов, работающих при высоких температурах (выше 500 °С), паяют тугоплавкими припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.  [c.240]

При работе механизмов при высоких температурах, в химически активных средах и в вакууме жидкие смазки теряют свои свойства. В этих случаях применяют твердые смазки, к которым относятся графит, а также сульфиды и селениды молибдена или вольфрама. Из твердых смазок наибольшее распространение получил дисульфид молибдена (МоЗ ), который наносится на трущиеся поверхности в виде пленки толщиной 20. . . 30 мкм и применяется в обычных условиях и 1 вакууме при больших перепадах температур (—180. .. -г 400 С) и высоких удельных давлениях. В опорах трения часто применяют металлокерамические самосмазывающиеся материалы в виде бронзо-графитовых и железо-графитовых материалов, где кроме твердой смазки (графита) присутствует жидкая смазка, заполняющая поры материала. Применяют также пористые антифрикционные материалы на основе меди и серебра, поры которых заполнены сульфидами, селенидами и теллуридами молибдена, вольфрама, ниобия. В этих случаях твердая смазка обеспечивает высокую несущую способность и малые коэффициенты трения.  [c.168]

Необходимо еще отмстить, что железо, марганец и хром образуют карбиды только первой группы тантал, ванадий, цирконий, ниобий и титан - только карбиды второй группы, а вольфрам и молибден могут образовывать карбиды обеих групп.  [c.75]


Твердые растворы неограниченной растворимости ниобий образует с молибденом, вольфрамом (рис. 39), ванадием, танталом, титаном и цирконием (рис. 40). С хромом, никелем и железом нио-  [c.88]

Жаропрочные сплавы на никелькобальтовой основе содержат жаропрочные и тугоплавкие металлы, а также агрессивные по отношению к кислороду элементы - титан, цирконий, ниобий. Сплавы содержат 10 - 12 полезных элементов, 4-8 нежелательных (кремний, марганец, железо, ванадий) и вредные (сера, фосфор, свинец, висмут и др.) элементы.  [c.267]

В составы титановых сплавов, кроме алюминия, дополнительно вводят молибден, ванадий, цирконий, хром, кремний, олово, ниобий и железо. Эти легирующие элементы, а также попадающие примеси изменяют температуру полиморфного превращения титана.  [c.298]

Для повышения температуры полиморфного превращения а-ти-тана вводят алюминий, кислород, азот и углерод для понижения температуры полиморфного превращения уЗ-титана добавляют цирконий, ниобий, ванадий, молибден, марганец, железо, хром, кобальт и др.  [c.298]

Рис. 122. Кривые т—л> для ниобия зонной плавки при различных температурах (а) и монокристаллов железа с различными ориентировками (б). Цифрами у кривых обозначены ориентировки. Величина 0jj зависит от ориентировки Рис. 122. Кривые т—л> для ниобия <a href="/info/33518">зонной плавки</a> при различных температурах (а) и <a href="/info/230630">монокристаллов железа</a> с различными ориентировками (б). Цифрами у кривых обозначены ориентировки. Величина 0jj зависит от ориентировки
Образует химические соединения с бериллием, бором, углеродом, азотом, кислородом, фтором, алюминием, кремнием, фосфором, серой, хлором, питалом, марганцем, железом, цирконием, ниобием, йодо м, танталом, платиной, рением.  [c.13]

В нержавеющей стали типа 304 (18-8) ниобий применяется с целью уменьшения межкрнсталлитной коррозии. Он связывает углерод в карбид, препятствуя тем самым выпадению его по границам зерен. Сопротивление разрыву и ползучести ниобийсодержащей стали 18-8, как правило, выше, чем у той же стали, не содержащей ниобия. В сложных сплавах на основе железа, содержащих ниобий, повышается их жаропрочность и пластичность в горячем состоянии. Кроме того, он сообщает этим материалам устойчивость против теплового удара.  [c.463]

Отрицательное влияние ниобия на горячеломкость аустенитных швов тесно связано с характером его растворимости в никеле и железе. Ниобий, как и титан, способен давать легкоплавкую эвтектику с каждым из указанных элементов [22, 33]. В табл. 34 приведены данные о предельной растворимости и температуре эвтектики для бинарных сплавов никеля и железа с ниобием и титаном. Согласно нашим представлениям о природе кристаллизационных трещин, можно ожидать, что в тех случаях, когда шов содержит относительно мало никеля, т. е. представляет собой аустенитную сталь, наибольшую опасность должен представлять ниобий, а не титан. В пользу такого утверждения говорит относительно более низкая растворимость ниобия в л<елезе по сравнению с никелем и более низкая температура эвтектики в системе Fe—Ni по сравнению с эвтектикой Fe—Ti. Наоборот, при сварке высоконикелевых аустенитных сталей и сплавов на никелевой основе следует ожидать отрицательного действия скорее титана, а не ниобия. В пользу этого утверждения говорит относительно более низкая температура эвтектики в системе N1—Ti по сравнению с эвтектикой Ni—Nb. Практика сварки аустенитных сталей, в общем, подтверждает эти предположения. При сварке сталей типа 18-8 ниобий опаснее титана. При сварке сталей с соотношением содержаний хрома и никеля, равным или меньшим единицы, например при сварке стали ЭИ696 (Х10Н20Т2), большую опасность представляет титан, а не ниобий.  [c.209]

Ответ. Мы согласны с проф. Шодроном, что возникновение точечной коррозии в результате наличия включений представляет собой довольно редкое явление. Необходимо, однако, уточнить, что в конкретном случае нашего исследования подвергшиеся коррозии включения состояли в основном из ряда частиц карбонитридов титана или соединений железа и ниобия. Можно полагать, что такие включения характеризуются сравнительно большой электропроводностью в полном согласии с гипотезой Гиттона и Пуатвена, тем более что, как указал Гуре, очень чистая вода становится сравнительно хорошим проводником тока при высокой температуре.  [c.237]


К химическим методам получения порошков относят такие методы, которые связаны с изменением химического состава исходного сырья или его агрегатного состояния 1) восстановление окислов металлов из окалины, воздействием на нее водородом или твердым углеродом при высокой температуре (железо, медь, никель, кобальт, вольфрам, молибден и др.), 2) термическая диссоциация карбонилов [химических соединений типа Ре(С0)5, N ( 0)4 и др. ] при давлении 30—40 МнЬл (300—400 кПсм ) и температуре 200—300° С (железо, никель, кобальт), 3) электролиз (осаждение) металлических порошков из водных растворов солей и расплавленных сред соответствующих металлов (олово, серебро, медь, железо, тантал, ниобий, цирконий и т. д.).  [c.434]

В сплавах железа с ниобием устансолено существование соединения РезНЬ, которое дает с железом твердые растворы ограни-  [c.323]

По системе упрочнения высоколегированные стали и сплавы делят на карбидные, содержание углерода 0,2—1,0%, боридные (образуются бориды железа, хрома, ниобия, углерода, молибдена и вольфрама), с интерметаллидным упрочнением (упрочнение мелкодисперсньши частицами).  [c.120]

Железо. Мгфгансц Ллюмипип Медь. Цинк. . Олово. Никель. Магний. Вольфрам Молибден Титаи. Сурьма. Кадмий. Ванадий Ниобий Тантал. Золото.  [c.19]

Технически чистые металлы характеризуются низкими прочностными свойствами, поэтому в машиностроении применяют главным образом их сплавы. Сплавы на основе железа называют черными, к ним относят стали и чугуны на основе алюминия, магния, титана и бериллия, имеющие малую плотность — легкими цветными на основе меди, свипца, олова и др. — тяжелыми цветными на основе цинка, кадмия, олова, свинца, висмута и других металлов — легкоплавкими цветными на основе молибдена, ниобия, циркония, воль4)рама, ванадия и других металлов — тугоплавкими цветными.  [c.5]

Отрицательнее —0,44 в Металлы повышенной термодинамической неустойчивости (неблагородные) Могут корродировать в нейтральных водных средах, даже не содержащих кислорода Литий, рубидий, калин, цезий, радий, барий, стронций, ка.чьций, натрий, лантан, магний, плутоний, торий, нептуний, бериллий, уран, гафний, алюминий, титан, цирконий, ванадий, марганец, ниобий, хром, цинк, галлий, железо  [c.40]

Особого внимания заслуживают сплавы циркония с добавками олова, железа и хрома, так называемые циркалои. Известный сплав цнркалой-2, содержащий 1,57о Sn 0,127о Fe, 0,09% Сг и 0,05% Si, обладает более высокой коррозионной стойкостью и прочностью по сравнению с цирконием при повышенных температурах, При легировании циркония молибденом и ниобием он еще более упрочняется.  [c.290]

Водород также растворяется в большинстве металлов. Металлы, способные растворять водород, можно разделить на две группы, К первой группе относятся металлы, не имеющие химических соединений с водородом (железо, никель, кобальт, медьидр.). Конторой группе относятся металлыд(титан, цирконий, ванадий, ниобий, тантал, паладий, редкоземельные элементы и др.), образующие с водородом химические соединения, которые называются гидридами. Водород очень вредная примесь, так как является причиной пор, микро- и макротрещин в шве и в зоне термического влияния.  [c.27]

При дальнейшем медленном охлаждении непрерывные твердые растворы этих двойных систем в определенном интервале концентраций образуют химические соединения FeNi3 РеСо, РеСг и FeV. Марганец, вольфрам, молибден, титан, ниобий, алюминий и цирконий образуют с железом твердые растворы замещения ограниченной растворимости. Причем, если количество введенных элементов превышает их предел растворимости с железом, то легирующие элементы образуют с железом химические соединения. На рис. 22 показана диаграмма состояния Fe - W. Тип диаграммы характерен для систем Fe - А1 (рис. 23), Fe - Si, Fe - Mo, Fe - Ti, Fe - Та и Fe - Be.  [c.45]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Рис. Я8. Бороздчатый рельеф на поверхности усталостной трещины в образцах из монокристаллов ниобия (а), железа (б), стали 45 (в) и низколегированной стали 12ГН2МФАЮ (г) Рис. Я8. Бороздчатый рельеф на поверхности <a href="/info/34437">усталостной трещины</a> в образцах из монокристаллов ниобия (а), железа (б), стали 45 (в) и <a href="/info/58326">низколегированной стали</a> 12ГН2МФАЮ (г)
ДВОЙНИКОВАНИЕ И ЕГО ГЕОМЕТРИЯ В МЕТАЛЛАХ С О. Ц. К., Г. Ц. К. и Г. П. У. РЕШЕТКАМИ, При ударном нагружении а-железа, например, во время скоростной пластической деформации, осуществляемой взрывом, возникают очень тонкие, кристаллографически правильно расположенные пластины — это двойники. Они образуются при деформации многих металлов с о. ц. к. структурой, включая молибден, вольфрам, хром, ниобий, тантал, а-железо. Двойники здесь обычно длинные и тонкие, редко достигающие толщины 5-10" см, поскольку с двойникованием связано протекание большой (7=0,707) пластической деформации (см. табл. 6). Плоскостями двойникования являются 112 (на рис. 77, а они перпендикулярны плоскости чертежа). Плоскости 112 упакованы в последовательности AB DEFAB . ... (79)  [c.135]

Скорость упрочнения (параметр 0ц) на стадии II упрочнения мала по сравнению с величиной 0и г. ц. к. монокристаллов, для которых 011 не является температурночувствительной характеристикой. В о. ц. к. монокристаллах, наоборот, 011 зависит от температуры и уменьшается с повышением температуры. Примеси внедрения оказывают существенное влияние на вид кривой т—у. Например, для а-железа величина 0ц чувствительна к ориентации кристалла, равна по величине значению 0ц для г. ц. к. монокристаллов (рис. 122,6). Наступление стадии II в ниобии точно отвечает появлению двойного скольжения, и протяженность стадии I увеличивается с удалением от симметричной границы кристаллографического треугольника [001]—[101]. У железа, например, можно обнаружить три стадии только у кристаллов мягкой ориентировки. Параболическая кривая т—у получается при скольжении по двум системам скольжения (рис. 122, б).  [c.200]


По принятым стандартам различные сплавы имеют условные обозначения, составляемые из букв и чисел. Буквы обозначают наиболее характерные элементы состава сплава, причем буква, входящая в название элемента, не всегда является первой буквой этого названия (например, Б означает ниобий, В — вольфрам, Г — марганец, Д — медь, К — кобальт, Л — бериллий, Н — никель, Т — титан, X — хром, Ю — алюминий и т. п.), число соответствует приблизительному содержанию данного компонента в сплаве (в массовых процентах) дополнительные цифры в начале обозначения определяют повышенное (цифра 0) или пониженное количество сплава. Так, например, обозначение 0Х25Ю5 соответствует сплаву особо высокой жаростойкости с содержанием хрома около 25% и алюминия — около 5% В табл.2.2 и 2.3 приведены свойства некоторых сштавов на основе железа.  [c.37]


Смотреть страницы где упоминается термин Железо — ниобий : [c.92]    [c.177]    [c.469]    [c.1644]    [c.1230]    [c.108]    [c.578]    [c.288]    [c.523]    [c.310]    [c.91]    [c.377]    [c.137]    [c.514]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Железо — ниобий



ПОИСК



Диаграмма состояний алюминий азот железо—ниобий

Диаграмма состояний железо—титан железо—углерод—ниобий

Диаграмма состояний железо—титан ниобий —азот

Диаграмма состояний железо—титан ниобий—бор

Диаграмма состояний железо—титан ниобий—водород

Диаграмма состояний железо—титан ниобий—кислород

Диаграмма состояний железо—титан ниобий—углерод

Железо — углерод — ниобий

Ниобий

Ниобит 558, XIV

Система железо — ниобий



© 2025 Mash-xxl.info Реклама на сайте