Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Правка деформаций

Время приложения силы 1,5—2 мин. Чтобы получить требуемую точность, операция повторяется несколько раз. Устраненная холодной правкой деформация в процессе работы детали может возникнуть повторно. Повышение устойчивости правки обеспечивается нагревом до 400—500° С с выдержкой 0,5—1 ч. Если такой нагрев детали осуществить нельзя (из-за ухудшения механических свойств закаленных поверхностей), то деталь нагревается до 180— 200° С и выдерживается в печи 5—6 ч. Холодная правка деталей снижает предел их выносливости на 10—15%. Для устранения этого недостатка при правке коленчатых валов двигателей типа В-2 применяют правку наклепом. Для местного поверхностного наклепа применяются ручные и пневматические молотки с бойками сферической формы радиусом 10—20 мм. Размер площадок и глубина наклепанного слоя определяются опытным путем, в зависимости от степени изгиба, формы и размеров деталей.  [c.227]


При газопламенной правке деформации изгиба, необходимые для выправления элементов изделий в одной плоскости, достигаются не механическими средствами, а за счет соответствующего использования остаточных пластических деформаций, возникающих в результате быстрого и концентрированного местного нагрева, в нужном для правки направлении, пламенем газовой горелки.  [c.190]

Деформацию изгиба (рис. 5.60, а) можно исключить предварительным обратным прогибом балки перед сваркой (рис. 5.60, б) рациональной последовательностью укладки швов относительно центра тяжести сечения сварной балки (рис. 5.60,6, в случае несимметричной двутавровой балки вначале сваривают швы I и 2, расположенные ближе к центру тяжести) термической (горячей) правкой путем нагрева зон, сокращение которых необходимо для исправления деформации заготовки, до температур термопластического состояния (рис. 5.60, г штриховкой показаны зоны нагрева). При правке заготовки нагревают газовым пла.менем или дугой с применением неплавящегося электрода. Разогретые зоны претерпевают пластическую деформацию сжатия, а после охлаждения — остаточное укорочение. Последнее обусловливает дополнительную деформацию сварной заготовки, противоположную но знаку первоначальной внешней сварочной деформации. Подобную деформацию можно также получить, если наложить в указанных зонах холостые сварные швы.  [c.252]

Правка осуществляется созданием местной пластической деформации и, как правило, производится в холодном состоянии. Для устранения волнистости листов и полос толщиной о,5...50 мм ШИ-  [c.32]

Образование сварочных деформаций и напряжений. Основными причинами образования собственных напряжений и деформаций в сварных соединениях и конструкциях являются неравномерный нагрев и охлаждение металла при сварке, структурные и фазовые превращения, механическое (упругое и пластическое) де( р-мирование при сборке, монтаже и правке сварных узлов и конструкций.  [c.33]

Мероприятия, применяемые после сварки механическая правка сварных изделий для создания пластических деформаций, обратных сварочным, путем растяжения, изгиба, местного деформирования проковкой, прокаткой роликами, осадкой металла по толщине под прессом и др.  [c.37]

Рассмотрены основные положения теории деформации металла. Приведены технико-экономические характеристики правильных машин, сведения об их эксплуатации и настройке. Описаны особенности правки тонкостенных профилей, высокопрочных труб, профилей с Покрытием и т. д. Изложены сведения о механизации и автоматизации процессов Правки.  [c.30]


Быстрый поверхностный нагрев с большими градиентами температуры и резкое охлаждение вызывают в обрабатываемых деталях напряжения и остаточные деформации. Введение операции правки, окончательного шлифования осложняет производственный процесс.  [c.14]

Начальное мгновенное рассеивание параметров обрабатываемых деталей связано с быстропротекающими процессами — деформацией элементов станка и вибрациями системы. Причиной появления погрешностей обработки является износ механизма правки шлифовального круга и базовых поверхностей изменяющих взаимное положение инструмента и обрабатываемой детали.  [c.162]

Испытания труб после горячей и холодной правки показали, что разрушение сопровождалось пластическими деформациями и происходило на уровне напряжений, близких к временному сопротивлению материалов этих труб (0,86—1,04 Он). Статическое испытание труб диаметром 720 мм (6 = 8 мм) при наличии выдержки под давлением (от 70 до 100 кгс/см ) длительностью свыше 100 ч не показало снижения уровня разрушающих напряжений по сравнению с однократным кратковременным нагружением до разрушения.  [c.145]

Испытания при постоянной деформации наиболее просты. Применяют образцы предварительно изогнутые (петли, кольца, образцы в струбцинах) или имеющие постоянные технологические напряжения от сварки, правки и т. п. После экспозиции в испытательном растворе производят анализ на наличие и глубину трещин. Определяют время до появления трещин и их глубину в зависимости от уровня деформации.  [c.54]

В отличие от других сплавов серии 2000 следует отметить понижение предела текучести сплава 2021 после окончательной термической обработки материала, если холодная деформация предшествует искусственному старению, что является результатом изменений в процессе зарождения выделений [124]. Вредное влияние холодной деформации, такой как правка растяжением с целью выровнять и снять закалочные напряжения в плите, может быть уменьшена. Для этого правку проводят после предварительного старения по режиму нагрев при 149 °С в течение 1 ч. Предварительная термическая обработка создает систему структурных выделений перед операцией растяжения [125]. Таким образом, технологическая схема обработки для сплава 2021 (на состояние  [c.239]

Упрочнению коленчатых валов повсеместно уделяется большое внимание, так как без упрочнения валы работают сравнительно небольшой срок и их бракуют по усталостным трещинам при капитальном ремонте. Возникающие при упрочнении деформации устраняют правкой путем чеканки щек. Для этой цели используют пневматические молотки последовательность чеканки и места нанесения ударов зависят от величины и направления деформации и отрабатываются опытным путем (рис. 53).  [c.113]

Конструктивные формы и размеры заготовки должны предусматривать упругие деформации материала, которые, например, делают невозможным получение в местах перегибов угла 90 с жестким допуском в пределах 10— 30 без дополнительной правки (фиг. 476, а), в то время как заготовка, допускающая отклонения углов в сторону увеличения на 2—3°, не требует этой дополнительной операции (фиг. 476, б).  [c.523]

Нагрев значительно выше верхней критической точки при закалке стальных деталей приводит к перегреву, связанному с ростом зерна стали, особенно при длительной выдержке при высокой те<м-пературе, в результате чего происходит брак деталей по деформации, хрупкости при правке и поломке в эксплуатации вследствие снижения прочности металла.  [c.501]

Смещение центров мгновенного распределения предопределяется монотонным изменением во времени ряда других указанных выше факторов (например, износа режущего инструмента и алмаза для правки шлифовальных кругов, тепловых деформаций).  [c.304]

Пластическая деформация после азотирования в зонах концентрации напряжений является недопустимой (даже если она не приводит к разрушению слоя), так как она уменьшает остаточные напряжения сжатия, поэтому правку деталей после  [c.304]

На основании перечисленных особенностей разработана лабораторная автоматизированная система диагностирования шлифовальных станков-автоматов, включающая измерение и анализ их основных характеристик, отдельных узлов и параметров технологического процесса. Система позволяет установить взаимозависимость между отдельными параметрами и их связи с показателями качества. Она включает в себя (см. рисунок) датчики (Д ,. . Д,) основных параметров мощности, потребляемой в процессе шлифования и на холостом ходу, измерений вибраций шпинделя круга, биения шпинделя, давления масляного тумана в шпинделе, осевого смещения шпинделя, измерения статической и динамической жесткости станка, засаливания шлифовального круга, числа оборотов шлифовального круга, измерения уровня вибрации и отклонения точности перемещения узла правки, числа оборотов обрабатываемого изделия, измерения припуска, дифференцирования сигнала припуска, температурной деформации обрабатываемой детали, числа оборотов шпинделя изделия, уровня  [c.116]


В период между правками, в процессе шлифования, происходит постепенное уменьшение размера шлифовального круга, а также изменение режущей способности круга. На погрешность обработки при использовании приборов активного контроля во многих случаях размерный износ круга не влияет. Однако изменение режущей способности круга за период его стойкости приводит к изменению сил резания, а следовательно, к появлению различных по величине силовых и тепловых деформаций системы. С уменьшением режущей способности круга ухудшаются чистота обрабатываемой поверхно и и геометрическая форма детали.  [c.17]

Процесс холодной гибки и правки стали связан с пластическими деформациями и протекает при напряжениях, доведённых до предела текучести. Площадка текучести для стали марки Ст.З на диаграмме Относительное удлинение— напряжение занимает по длине 2 —  [c.494]

Холодная правка в правочных молотовых штампах более производительна и удобна по сравнению с горячей правкой. Но не всякий материал (из-за хрупкости) можно подвергать холодной правке без риска его разрушения. Большинство машиноподелочных сталей допускает холодную правку, но в пределах малой степени деформации. Поковки из наиболее ходовых марок стали во избежание трещин правятся в отожжённом или нормализованном состоянии.  [c.373]

Правка является нежелательной операцией, так как создаёт остаточные напряжения в изделиях, а в некоторых случаях приводит к браку. Изделие, подвергнутое правке, может дать возврат деформации в процессе эксплоа-  [c.618]

Аналитическую связь между напряжениями и деформацией за пределом пропорциональности в точном виде установить не представляется возможным, вследствие чего исследование процесса правки приходится вести упрощённым путём, считая изгибаемый материал за идеальное упруго-пластичное тело, допуская при этом, что при деформациях ниже предела текучести материал будет идеально упругим, а при более высоких деформациях — идеально пластичным. Этим самым мы принимаем пределы пропорциональности и упругости равными пределу текучести и пренебрегаем упрочнением материала в пределах тех пластических деформаций, которые возникают при правке металла.  [c.993]

Мероприятия, уменьшающие внешние сварочные деформации, направлены на снижение остаточного укорочет1я и устранение несимметричности его распределения, а также на повышение сопротивления свариваемых элементов деформированию. Они могут быть реализованы на этапе конструирования или изготовления сварного узла. Часто полностью устранить сварочные деформации не удается. 11оэтому при необходимости возможно применение правки уже готовых сварных заготовок.  [c.251]

Листовой прокат требует правки в том случае, если металлургический завод поставляет его в пеправленном виде, а также если деформации возникли при транспортировании. Наиболее часто встречаюп[иеся вид 11 деформирования листовой стали приведены на рис. 3.1.  [c.32]

Холодная деформация сопровождается уменьшением пластичности металла. Поэтому относительное остаточное удлинение 6 наиболее деформированных волокон необходимо ограничивать. Например, согласно Строительным нормам и правилам (СНиП) допускают 6 при ХОЛОДНО) правке до i% при холодной гибке — до 2%, что соответствует радиусу изгиба ие более 50 толщин листа при иранке и не более 25 толн1,ин листа при гибке. Исходя и.ч -зтого, устанавливают предельные значения искривлений, исправление которых  [c.34]

Для предотвращения или устранения вредного влияния технологической наследственности заготовительных операций нередко приходится вводить ограничения или дополнительные мероприятия. Так, при холодной правке и гибке металла устанавливают допускаемые значения пластической деформации при механической разделительной резке на ножницах иногда предусматривают удаление металла вблизи кромки реза, где не исключено наличие надры-  [c.44]

При производстве судовы.х корпусных конструкций сварочные деформации часто оказываются выше допустимых. Для их исправления применяют главным образом правку местным нагревом. На стапеле правка ребристости и волнистости производится 1тосле установки и закрепления секции или блока в жестком контуре. Местные угловые деформации полотнищ толщиной 4... 10 мм правят нагревом обшивки над каждым ребром жесткости со сторочы, противоположной приваренному набору. Правку полотнищ толщиной  [c.340]

Для снижения коробления деталей сложной формы при закалке в масле применяют охлаждение в штампах или в специальных при-способлеииях. При этом во многих случаях во время правки в процессе закалки используется эффект снижения сопрогивлення пластической деформации, наблюдающейся в момент развития мартенсит-ного превращения.  [c.206]

Изготовление проволочных колец несложно. Кольца малого дпаметра изготовляют разрезанием витой спирали по образующей с послелующей правкой витков на плоскость, закалкой п отпуском. Диаметр спиральной заготовки устанавливают экспериментально с учетоь[ деформации витков при разрезании и термической обработке. Мелкие отк.чоыенпя устраняют правкой в закаленном состоянии.  [c.558]

Отличительной особенностью оболочковых конструкций по сравнению с другими металлоконструкциями являются то, что их соединения должны у довлетворять не только у словиям прочности и надежности, но и плотности. Выполнение этих условий наиболее просто и надежно обеспечивается в сварных оболочках. К числу особенностей изготовления оболочковых конструкций следует отнести также и то, что при заготовке для них отдельных элементов применяются такие операции как штамповка, холодная гибка, правка и т.п., которые связаны с протеканием больших тастических деформаций в заготовках и со значительным использованием запаса пластичности материала. Это приводит к том, что к материалам оболочковых конструкций, как гтравило, предъявляются повышенные требования по характеристикам пластичности  [c.70]


Глубина закаленного слоя задается конструктором, исходя из условий работы детали, требований к ее прочности (общей и местной). Оптимальная изгибняя усталостная прочность и прочность на кручение для цилиндрических деталей достигаются при глубине закаленного слоя, составляющего -- 10% от диаметра. Для высокой контактной усталостной прочности максимум контактных напряжений не должен выходить из пределов термообработанного слоя, С возрастанием глубины закалки растут поводки, приходится вводить правку, увеличивать припуски на шлифование. Для деталей, работающих на истирание, пе подверженных деформации при закалке, целесообразно задать глубину закалки в пределах 1—2 мм. Глубина закаленного слоя не должна быть выше указанного в табл, 1,  [c.5]

Убеднвинхь, что границы закаленного слоя, глубина и твердость у образна близки к заданным, можно перейти к изготовлению макро- н микрошлифов, исследованию микроструктуры, распределения твердости по глубине слоя в различных сечениях, наиболее ответственных местах (на участках с галтелью, пазами, отверстиями, вырезами и тому подобными осложнениями геометрии поверхности). Только на основе микроскопического анализа можно получить объективное заключение о величине зерна и однородности структуры закаленного слоя, глубине переходного слоя, дать правильные рекомендации ио корректировке режима закалки. Твердость закаленного слоя, особенно в пределах, задаваемых техническими условиями, является слишком грубым показателем качества закалки при отработке режима. Это показатель производственного иериодического контроля проведения процесса закалки по установленному режиму. При отработке режима кроме установленных пределов твердости необходимо оценивать микроструктуру закаленного слоя, хотя бы по какой-то факультативной шкале структур. При отработке режимов закалки крупногабаритных деталей их микроструктуру исследуют с помощью переносного микроскопа на микрошлифе лыски, отполированной вручную шлифовальной машинкой, т. е. без разрушения детали. Для деталей, подверженных деформации, производится обмер партии, определяется необходимость введения операции правки и поле допуска на последующую механическую обработку 62  [c.62]

Распределительный вал — деталь длинная и тонкая с асимметрично расположенными кулачками и эксцентриком — проходит правку на предыдущих операциях и поступает на закалку в неопределенно напряженном состоянии. Положение в индукторе отдельных элементов свободного вала мол<ет самопроизвольно меняться, в результате чего дополнительно увеличивается искривление вала. Даже жестко закрепленный вал после закалки и выхода из станка искривляется, так как рядом с кулачками и эксцентриком поверхностные слои стебля вала греются неравномерно. Нагрев опорных нюек и шестерни из-за неправильного расположения в индукторе также может быть асимметричным. Кроме того, вполне симметричный нагрев сим.метричной детали может вызвать деформацию, если деталь была пластически неоднородно деформирована, например подвергалась правке. Тем не менее, можно ожидать, что закалка рабочих поверхностей вала блил<е к нижнему пределу глубины, регламентированной ГОСТом, приведет к уменьшению деформации.  [c.74]

Рис. 4. Влияние параметров надрезов, резьбы, технологических рисок и впадин шероховатости для деталей из различных материалов на концентрацию текущих напряжений, максимальных тангенциальпы.х остаточных напряжений и глубину зоны пластических деформаций при действии номинальных растягивающих напряжени с последующей разгрузкой (модель операций правки растяжением, ускоренных охлаждений после сквозных технологических нагревов и др.). Рис. 4. <a href="/info/349561">Влияние параметров</a> надрезов, резьбы, технологических рисок и впадин шероховатости для деталей из различных материалов на концентрацию текущих напряжений, максимальных тангенциальпы.х <a href="/info/6996">остаточных напряжений</a> и глубину <a href="/info/242743">зоны пластических деформаций</a> при действии номинальных растягивающих напряжени с последующей разгрузкой (модель операций правки растяжением, ускоренных охлаждений после сквозных технологических нагревов и др.).
Предыдущей деформацией (глубокая вытяжка), а также операций вальцовки заготовок перед вытяжкой облицовочных панелей в авто кузовном производстве. Такая вальцовка на специальных многовалковых машинах, помимо правки и устранения коробления заготовок, необходима для улучшения физико-механических свойств стального листа перед вытяжкой и позволяет предупре,дить появление линий скольжения.  [c.418]

Ленточными конвейерами кольца подаются к пневматическому устройству для загрузки в индукционный нагреватель шахтного типа. В индукционном нагревателе мощностью 500 кВт при напряжении 1000 В и частоте тока 1000 Гц за время подъема на позицию разгрузки кольца нагреваются до 900 С. Они загружаются в штамп фрикционного пресса с номинальным усилием 3,15 МП и максимальным ходом ползуна 300 мм. Полезное число ходов составляет до 32 за 1 мин. Внедрением стального стержня обеспечивается пластическая деформация колец в радиальном направлении и калибрование их размеров. Формообразование завершается правкой колец в торец. Гидравлическими выталкивателями кольца удаляются из штампа и конвейером подаются в охладительную камеру. С помощью промежуточных транспортных устройств кольца поступают в камеру дробеметиой установки, где двумя аппаратами (мощность электродвига-  [c.249]

Рис. 10.104. Прибор для настройки роликонравильнон машины и контроля действительных деформаций штуки (рельса) при правке с учетом прогибов валов роликов и зазоров, в подшипниках. Между Рис. 10.104. Прибор для настройки роликонравильнон машины и контроля действительных деформаций штуки (рельса) при правке с учетом <a href="/info/65111">прогибов валов</a> роликов и зазоров, в подшипниках. Между
Процесс правки на трёхроликовой правйльной машине. Так как пластическая деформация сопровождается упругой, полоса при правке должна быть изогнута на некоторую величину в обратную сторону с тем, чтобы при удалении нагрузки она стала прямой (фиг. 69).  [c.993]

Если бы при той же первоначальной кривизне полосы (выпуклость вниз) перекрытие роликов лравйльной машины Л,з4д было большим, то суммарная деформация полосы ЛЛ, увеличилась бы за счёт увеличения остаточной деформации ЛЛа при той же упругой деформации Л1Ла в результате этого из трёхроликовой правйльной машины полоса выходила бы с некоторой кривизной (выпуклостью вверх). Если бы перекрытие было меньше, то полоса после правки имела бы кривизну в обратную сторону.  [c.994]

Выполнением условия (115) идеальную правку на трёхроликовой правйльной машине можно было бы получать, если бы полоса всё время имела одинаковую первоначальную кривизну. Но в практике первоначальный радиус кривизны полосы р меняется не только по величине, но даже и по знаку- В этом случае точка В на эпюре деформаций (фиг. 70,а) и на эпюре напряжения (фиг. 70, ) будет непрерывно менять  [c.994]


Смотреть страницы где упоминается термин Правка деформаций : [c.533]    [c.315]    [c.34]    [c.214]    [c.37]    [c.15]    [c.55]    [c.92]    [c.524]    [c.259]   
Ручная дуговая сварка (1990) -- [ c.0 ]



ПОИСК



ИССЛЕДОВАНИЯ ТЕПЛОВЫХ ДЕФОРМАЦИЙ ДЕРЖАВКИ С АЛМАЗОМ В ПРОЦЕССЕ ПРАВКИ ШИРОКИХ АБРАЗИВНЫХ КРУГОВ

Правка

Правка деформаций механическая

Правка деформаций термическая



© 2025 Mash-xxl.info Реклама на сайте