Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение внешнее— Влияние

Трение внешнее— Влияние на критические состояния валов 330, 331 — Влияние на число ступеней свободы механических систем 225, 234 —Силы 218, 224 — Учет при колебаниях пластинок 373  [c.566]

Зайцева, модель A СССР (1925) Трение трёх цилиндрических образцов торцами о плоскую поверхность или трение друг О друга двух плоских колец. Момент трения записывается на диаграмму. Испытание может производиться при смазке и без неё Диаметр кольца трения внешний 52 лж, внутренний 34 мм Числа оборотов в минуту 200 — 500. Нагрузка—до 50/сг [12. 2] Применялась для исследования влияния наклёпа на износ стали [7] и для абразивных испытаний стали [9]  [c.205]


На внутреннее трение сильное влияние оказывают примесные атомы, особенно внедрённые. В а-железе, содержащем примеси углерода или азота, обнаружен релаксационный пик при частоте гц вблизи комнатной температуры (рис. 21). Согласно Сноску, пик связан с диффузионным перемещением атомов примеси в те междоузлия, искажения которых более всего соответствуют общей деформации решетки под влиянием внешнего напряжения. Энергия активации изменения частоты релаксационного пика с температурой составляет около 1,6-10- дж (1 эв), что близко к энергии активации диффузии атомов углерода и азота в а-железе. Высота пика затухания пропорциональна концентрации растворенных примесей и, следовательно, может быть использована для определения растворимости в твердом растворе. Выделение из раствора примесных атомов можно оценить по уменьшению высоты пика в зависимости от времени и температуры.  [c.69]

Величину деформации относят к числу косвенных факторов внешнего трения. Однако влияние этого фактора может быть значительным, поскольку от величины обжатия зависят контактные давления, состояние поверхности обрабатываемого тела, толщина разделительного смазочного слоя и другие условия, важные с точки зрения формирования сил трения.  [c.27]

Наложение на схему поперечного сжатия гидростатического давления вследствие внешнего трения и влияния внешних реактивно деформируемых объемов приводит к повышению против расчетного по уравнению (XV.21). Однако обш,ий характер закономерности, выраженной этим уравнением, в основном сохраняется, что хорошо видно из многочисленных опытных данных по прокатке биметаллов.  [c.336]

В практике станкостроения известны случаи успешного использования осциллирования для обеспечения равномерности медленных движений. Основной причиной прерывистого скольжения при малых скоростях является различие коэффициентов статического и кинетического трения. Рассмотрим влияние внешних вынужденных колебаний на характер трения и их возможную положительную роль.  [c.184]

Трение внешнее и внутреннее — Учет при колебаниях 373 Усилия начальные в срединной плоскости— Влияние на колебания 372, 373, 399—401  [c.559]

В ней рассмотрены нормальные процессы внешнего трения и влияние на их протекание факторов внешних механических нагрузок, среды и свойств материалов, а также условия возникновения различных отклонений от нормальных условий.  [c.10]


Таким образом, как следует из основных положений молекулярно-механической теории внешнего трения, на выполнение условий внешнего трения существенное влияние оказывает физико-химическое состояние поверхностей взаимодействующих твердых тел, механические свойства менее жесткого из взаимодействующих тел и шероховатость поверхности более жесткого твердого тела [11, 13].  [c.103]

На процессы контактного взаимодействия при трении существенное влияние оказывают адгезионные связи. Внешнее проявление адгезионного взаимодействия может быть классифицировано от чисто физического до чисто химического. Учет адгезионных явлений в зоне фрикционного металлополимерного контакта с привлечением флуктуационной электромагнитной теории молекулярного взаимодействия твердых тел позволил разработать метод регу-  [c.355]

При циклических нагрузках указанная неполная упругость приводит к рассеянию энергии. Роль дислокаций в этом явлении сложная. Во-первых, сила, приложенная к дислокации, имеет демпфирующий характер, так как скорость перемещения дислокаций может не совпадать со скоростью нарастания или уменьшения внешних сил, что приводит к отставанию перемещения дислокации (т. е. деформации) от напряжения, Во-вторых, если частота пульсаций внешних сил совпадает с резонансной частотой линий дислокаций, то расхождение между напряжением и деформацией будет увеличиваться. Оба эти эффекта сильно зависят от частоты пульсации внешних сил. Наконец, в-третьих, яа внутреннее трение оказывают влияние также те напряжения, которые окружают дислокацию, и эффективность этого фактора зависит от амплитуды напряжения внешних сил.  [c.382]

Ло - коэффициент напряженного состояния, учитывающий влияние внешнего трения, внешних зон и натяжения - площадь контактной поверхности соответствующего участка.  [c.638]

Внутреннее трение зависит от многих факторов, влияние которых определяется их воздействием на тот или иной механизм рассеяния энергии. Каждый механизм рассеяния при неизменных внешних условиях (температура. давление и др.) проявляется в определенной области частот. Повышение температуры, как. правило, монотонно увеличивает фон внутреннего треиия. В ряде случаев на внутреннее трение оказывает влияние амплитуда деформации.  [c.89]

Процессы трения рассматривают на моделях, позволяющих оценить молекулярное взаимодействие материалов контактирующих тел с учетом влияния внешней среды (оксиды, пленка, смазка). Первоначально разработанные теории механического сцепления, молекулярного притяжения, сваривания, среза и пропахивания получили значительное развитие в молекулярно-механической теории трения, нашедшей наиболее широкое распространение. Согласно этой теории процесс трения происходит не только на границе раздела твердых тел, но и в некотором объеме поверхностных слоев, физико-механические свойства которых отличаются от свойств материалов в объеме тел. Это связано с деформированием поверхностных слоев, с изменением температуры, с образованием слоев адсорбированных паров влаги или газов, с образованием пленок оксидов, атомов или молекул окружающей среды и т. п.  [c.228]

Конструкционное демпфирование в неподвижных соединениях. Наряду с внешними демпфирующими факторами на колебания механических систем заметное влияние могут оказать энергетические потери внутри самой конструкции (конструкционное демпфирование). Эти потери происходят из-за трения в кинематических парах, а также в соединениях типа прессовых, шлицевых, резьбовых, заклепочных и т. п. Хотя такие соединения принято называть неподвижными, в действительности при их нагружении неизбежно возникают малые проскальзывания по контактным поверхностям на соответствующих относительных перемещениях силы трения совершают работу.  [c.282]

Практически расчет подшипника выполняют как проверочный по заданной внешней нагрузке Р и угловой скорости со размеры dud назначают конструктивно в соответствии с размерами вала, а величину 1 определяют в зависимости от марки масла (с последующим уточнением влияния температуры смазочного слоя). Из формулы (4) определяют значение коэффициента несущей силы, при котором должно выполняться условие жидкостного трения  [c.439]


Рассмотрим процесс теплоотдачи при конденсации сухого насыш,енного пара по вертикальной стенке (рис. 12.1) при следующих, упрощающих реальную физическую обстановку, предположениях течение пленки ламинарное силы инерции пренебрежимо малы по сравнению с силами вязкости и тяжести конвективный перенос теплоты в пленке конденсата и теплопроводность вдоль пленки пренебрежимо -малы по сравнению с теплопроводностью поперек пленки влиянием трения между поверхностью пленки конденсата и пара пренебрегаем температура на внешней границе пленки конденсата равна температуре пара плотность конденсата и его физические константы X, р.) не зависят от температуры градиент давления зависит от изменения гидростатического давления пара вдоль оси х, так как оно мало, то dp/dx==0.  [c.252]

При сжатии подобных цилиндрических заготовок из одного и того же металла, но разных по размеру сопротивление деформации тем больше, чем меньше размер образца. С. И. Губкин объясняет этот эффект тем, что для меньшего по размерам образца создаются в большей степени условия для всестороннего объемного сжатия за счет относительно более сильного развития контактной поверхности и возникновения относительно больших напряжений сжатия от сил контактного трения. Однако эффект увеличения напряжения — незначительный, и, видимо, более существенное значение фактора FjV обусловлено большей относительной развитостью поверхности и за счет этого более существенным воздействием внешней среды на пластичность и сопротивление деформации меньших по объему образцов. При этом на изменение пластичности и сопротивление деформации оказывают влияние 1) окружающая среда 2) состояние поверхности слоев, сформировавшихся по структуре и свойствам в результате обработки резанием 3) контактное трение и поверхностное натяжение.  [c.480]

Эти уравнения позволяют количественно оценить влияние каждого из трех внешних параметров на интенсивность изнашивания композиционного материала и коэффициент трения в условиях эксплуатации. Анализ уравнений показывает, что наибольшее влияние на 7 оказывают скорость скольжения и параметр взаимодействия PV, а на коэффициент трения - контактное давление Р и параметр взаимодействия PV  [c.30]

Выбор класса шероховатости поверхности оказывает существенное влияние на работоспособность деталей механизмов. Повышение класса шероховатости поверхности детали уменьшает трение, повышает износостойкость, увеличивает предел выносливости, повышает стабильность подвижных и неподвижных посадок, повышает стойкость против коррозии и улучшает внешний вид.  [c.119]

В 3 и 6 были рассмотрены идеальные процессы. На практике при движении жидкостей или газов в каналах проявляется влияние свойства вязкости и внешних по отношению к потоку сил трения на стенках канала. Это влияние сильно возрастает для длинных каналов, в связи с этим характерно стремление делать короткие сопла. С другой стороны, при очень коротких соплах сильно нарушается равномерность распределения скоростей, возникают резко выраженные неравномерные пространственные движения с возможными отрывами потока от стенок и появлением карманов с противотоками. Не только основные размеры и соответствующий градиент давления, но и форма контуров канала оказывают большое влияние на распределение скоростей внутри канала. Необходимо также учитывать шероховатость стенок канала и в некоторых случаях тепловые потоки сквозь их стенки (например, в соплах ракетных двигателей движущийся газ имеет температуру порядка 3000° К). В сверхзвуковых потоках основным источником потерь и неравномерностей могут являться скачки уплотнения. Внутри сопла такие скачки могут образовываться в зависимости от некоторых геометрических свойств контура канала и независимо от формы канала на нерасчетных режимах истечения (см. 6). В связи с этим в значениях средних по сечению характеристик потока в сопле могут наблюдаться отклонения от значений, рассчитанных но идеальной теории, изложенной в 3 и 6.  [c.93]

Влияние трения. На рис. 8.19 представлена упругая система с одной степенью свободы, в которой, однако, кроме внешней нагрузки и силы упругости действует также и сила трения. Эта сила может быть либо внешней, либо внутренней. В первом случае она является результатом трения движущегося твердого тела о неподвижную внешнюю среду. Во втором случае она возникает в самом теле в процессе его деформирования.  [c.226]

При выдержке кристаллизующегося расплава под давлением вибрация, передаваемая через выталкиватель, не оказывает существенного влияния на процесс получения отливки, так как колебания гасятся встречным усилием пресса. В этом случае трудно достигнуть значительного снижения внутреннего и внешнего Трения за счет вибрационного нагружения.  [c.143]

Для ответа на этот вопрос рассмотрим пример из механики. Как известно, неограниченно долгое прямолинейное и ранномернос движение тела возможно только в идеализированных условиях полного отсутствия какого-либо действия других тел на движущееся тело. Практически влияние других тел (трение, сопротивление и т. д.), устраняемое лишь с какой-то степенью точности, не означает ограниченности традиционного подхода к закону инерции и тем более его оюутствия. Учет этого внешнего влияния приводит только к изменению движения тела, но не к изменению зикона инерции.  [c.318]

Процесс внешнего трения представляет собой сложную совокупность механических, физических и физико-химических явлений. Основные факторы, влияющие на трение и износ фрикционных пар, условно разделяют на три группы технологические (структура, химические, физические и механические свойства) конструктивные (схема контакта, макро- и микрогеометрия поверхностей трения, геометрический фактор Ква конструкция рабочих поверхностей, способ подвода смазки) эксплуатационные (удельная работа трения, относительная скорость скольжения, удельная нагрузка, температурный режим, смазка и ее свойства). В процессе трения под влиянием указанных факторов формируются поверхностные слои твердых тел, 6б усЖ0Нливаюш ие механизм трения и износа и отличающиеся специфическим структурным состоянием. Образующиеся в процессе трения поверхностные слои твердых тел характеризуются повышенной свободной энергией, физической и химической активностью, а также иными механическими свойствами, чем более глубоко лежащие слои, не участвующие в процессе контактирования. Поверхностные слои определяют механизм контактного взаимодействия и уровень разрушения при трении.  [c.26]


В любом процессе обработки давлением наружные слои обрабатываемого металла перемещаются относительно поверхности инстру- мента. Такое перемещение связано с возникновением сил трения, на- зываемого внешним трением. Внешнее трение оказывает существенное. влияние на процессы пластической деформации оно препятствует леремещению деформированного металла, создает неравномерность напряженного состояния и деформации и вызывает увеличение расхода энергии на деформацию.  [c.80]

Очевидно, что в условиях более высоких нагрузок на маятник или более остро11 опоры с меньшей площадью контакта, например шероховатого стеклянного шарика как в опытах Венстрем, основной причиной затухания окажется поверхностное деформирование или разрушение металла и определяющей величиной станет твердость Н тл. ее понижение под влиянием адсорбции или заряжения поверхности при образовании двойного слоя ионов. По аналогии с этим обстоятельством следует указать, что из адсорбционного эффекта понижения поверхностной прочности металлов сразу же следует повышение износа при трении под влиянием поверхностно-активной среды (смазки) в условиях высоких местных давлений, т. е. значительных касательных напряжений, возникающих в поверхностном слое [99]. Такое повышение износа является не вредным, а практически полезным эффектом и используется на практике для ускорения приработки (обкатки деталей машин и механизмов) и для быстрой ликвидации местных повреждений поверхностей трения, всегда вызывающих высокие местные давления (аварийная смазка). После сглаживания поверхностей в результате износа площадь истинного контакта резко возрастает, а вместе с тем убывают нормальные и касательные напряжения в поверхностных слоях. В этих условиях действие поверхностно-активной среды на внешних поверхностях проявляется как обычное смазочное действие, понижающее силу трения и износ сопряженных поверхностей.  [c.200]

Указанные выше границы влияния стесненности движения зависят от соотношения /вн//н. Так, например, данные [Л. 345], полученные в медной трубке, указывают на падение скорости в пристенном слое на 15— 207о данные Л. 30], полученные в стальных трубах,— на 40—60%, а данные, полученные нами и в [Л. 341] в стеклянной трубке, — на 5%. Везде использовался один материал — кварцевый песок, а диапазон изменения скорости был одинаков. Значительная разница в результатах не случайна и вызвана изменением соотношения между коэффициентами и внешнего и внутреннего трения сыпучей среды. В пределе, когда коэффициент внешнего трения f оказывается заметно меньше коэффициента внутреннего трения движущихся частиц [вн, пристенный слой почти исчезает (стеклянная трубка), так как плоскость сдвига опускающегося слоя совпадает со стенкой канала. Следовательно, границы влияния А/йт могут существенно меняться при изменении состояния стенок и поэтому рассматриваются автором как новый метод воздействия на процесс теплообмена с движущимся слоем.  [c.295]

Предположим, пренебрегая влиянием сил трения, что кольца подвеса Кардана могут свободно вращаться. Пренебрегаем также массой колец подвеса Кардана. Тогда все внешние силы, приложенные к маховику G, приведутся к силе веса и равнодействующей реакций осей подвеса Кардана. Можно предполагать, что эти силы приложены в центре инерции гироскопа. Следовательно, главный момент внешних сил относительно центра инерции гироскопа равен нулю. Тогда на основании теоремы об изменении кинетического момента в движении системы относительно ее центра инерции можно утверждать, что кинетический момент гироскопа G относительно его центра инерции сохраняет постоянную величину и направление Lo = onst.  [c.446]

Фултона [18], Шспера [19] и Ван-Демтсра [20] ). Строгое теоретическое рассмотрение сложного турбулентного течения газа, которое имеет место в вихревой трубе, является чрезвычайно трудной задачей, особенно в связи с тем, что профиль скоростей потока внутри трубы экспериментально пока еще не определен. Однако качественно эффект охлаждения можно объяснить следую-п им образом. Вращающийся поток воздуха внутри трубы создает в радиальном направлении градиент давления, возрастающий от оси к стенке трубы. Влияние турбулентности на такое ноле давлений выражается в адиабатическом перемешивании. Это приводит к созданию адиабатического распределения температур, при котором более холодный газ оказывается в области, расположенной вблизи оси трубы. Однако вследствие теплопроводности, приводящей к уменьшению градиента температур в радиальном направлении а также непостоянства значений угловой скорости в разных местах трубы адиабатическое распределение полностью осуществлено быть не может. Ван-Демтор описывает последний эффект следующим образом Если угловая скорость непостоянна, то вступает п действие другой механизм, приводящий к возникновению потока механической энергии в радиальном направлении наружу. Вследствие турбулентного трения (вихревой вязкости) внутренние слои жидкости или газа стремятся заставить внешние слои двигаться с той  [c.13]

Например, в случае обтекания тела плавной формы при больших значениях числа Рейнольдса пограничный слой настолько тонок, что распределение давлений по поверхности тела определяется в первом приближении из уравнений движения идеальной жидкости. Далее, как будет показано в гл. VI, по известному распределению давлений можно рассчитать пограничный слой и найти напряжения треипя у поверхности. При необходимости можно во втором приближении рассчитать влияние пограничного слоя на внешнее обтекание тела (за пределами слоя) и затем определить более точно напряжения трения. Но  [c.91]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]

Все выводы предыдущего параграфа справедливы при предположении, что источник внешнего воздействия на систему обладает бесконечно большой мощностью. Только в этом случае можно считать постоянными амплитуду напряжения (генератор напряжения) или амплитуду тока (генератор тока) и не учитывать обратное влияние системы на источник колебательной энергии. Учтем теперь, что реальный источник обладает конечной мощностью, и колебательная система оказывает на него обратное воздействие Рассмотрим механическую систему, эквивалентная схема кото рой представлена на рис. 10.17. Возбуждаемая струна характе ризуется плотностью р, натяжением Т и плотностью сил трения h В центре струны через пружину связи с коэффициентом упру гости k подключен генератор механических колебаний. Генера тор представлен в виде резонатора с массой М, образованного пружиной с коэффициентом упругости k и элементом трения, характеризуемым коэффициентом крез- Автоколебательные свойства резонатора учтены зависимостью йрез от амплитуды колебаний. Эта зависимость приведена на рис. 10.18 (мягкий режим). Величина Ар является амплитудой устойчивых стационарных колебаний генератора в отсутствие связи со струной.  [c.341]


Под количеством теплоты j в уравнении (4.36) подразумевается как теплота, полученная текущей жидкостью от внешней среды путем теплообмена с ней, так и теплота, выделяемая в потоке внутренними источниками теплоты (например, вследствие сгорания части жидкости п т. п.), т. е. 1 2 есть общее или суммарное количество теплоты, полученной текущей жидкостью на пути 1—2. Теплота трения в величину не входит. Действительно, в основном уравнении (4.36) q представляет собой количество теплоты, полученной телом от других тел (источников теплоты), I — полезную внешнюю работу, отданную внешнему объекту ни теплота трения qjp, ни работа ripjOTHB сил трения в. значение q или / не входят. В самом деле, при наличии трения на преодоление сил трения должна затрачиваться работа Так как работа против сил трения полностью переходит в теплоту, пнутри данного количества текущей жидкости выделится количество теплоты qjj,, эквивалентное Учитывая влияние трения на течение жидкост[1, в правую часть уравнения (4.36) можно, подобно тому, как это было сделано для /техп и q, подставить значения /.г,, и q p. Вследствие эквивалентности работы трения /т,, и теплоты трения обе эти величины взаимно сокращаются и, таким образом, выпадают из уравнения (4.36). Из этого следует, что уравнение (4.36) справедливо для стационарных как обратимых течений, не сопровождающихся действием сил трения, так и для необратимых течений с трением и имеет один и тот же вид в обоих этих случаях.  [c.315]

Атомы, расположенные на поверхности, с внешней стороны имеют свободные связи, и поэтому соприкосновение ювенильной металлической поверхности с окружающей средой при атмосферном давлении приводит к мгновенному образованию на ней мономолекулярного слоя. Физическое состояние поверхности трения твердого тела характеризуется наличием определенного состава поверхностных пленок и особенностями структуры поверхностных слоев. В реальных условиях на воздухе все микровыступы и микротрещины почти м1новенно, от сотых до тысячных долей секунды, покрываются оксидн1,1ми пленками а слоями адсорбированных молекул газов, воды и жирных веп еств. Обычно над ювенильной поверхностью находятся слои оксидов, прочно связанн ,1е с металлом. Эти пленки влияют как на деформационное упрочнение, так и на хрупкое разрушение, причем по-разному при различных температурах и степнях деформации, что часто не учитывается современными теориями. Совершенно очевидно влияние этих пленок на  [c.58]

Внешние воздействия оказывают более существенное и сложное влияние на полимеры, чем на металлы. Так, при незначительном изменении температуры полимеры из стеклообразного состояния переходят в высокоэластическое и вязкотекучее и наоборот. Поэтому в связи с переходом основной части работы треняя в тепловую энергию управление температурой в зоне контакта полимерных материалов представляет собой актуальную и трудную задачу. Влияние дефектов поверхности на прочность полимеров значительно сильнее, чем у металлов. Это требует внимательного отношения к условиям контактного  [c.91]

Приведенное выражение показывает пути снижения интенсивности изнашивания уменьшение плотности накопленной материалом энтропии, локализация энергетических процессов в тонком поверхностном слое изнашиваемого материала, применение материалов с максимальным значением Sq или повышение этой величины различными методами (поверхностным упрочнением, легированием элементами с высокими энергиями активации и др.)- Однако оно не отражает влияния отдельных физических и химических процессов на увеличение плотности накоплений энтропии и производства избыточной энтропии, которые необходимо знать для теоретической оценки долговечности или износостойкости узла трения. Не умаляя ценности полученных результатов, необходимо отметить, что они не позволяют выразить об1цую связь внешних взаимодействий с термодинамическими и физикохимическими процессами в трибосистеме, определяюш,ими интенсивность изнашивания или долговечность различных трибосистем.  [c.110]


Смотреть страницы где упоминается термин Трение внешнее— Влияние : [c.304]    [c.212]    [c.278]    [c.203]    [c.299]    [c.330]    [c.45]    [c.75]    [c.98]    [c.105]    [c.115]    [c.116]    [c.206]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.0 ]



ПОИСК



Влияние механических свойств материала и внешних условий трения на интенсивность абразивного изнашивания

Деформация пластическая - Влияние внешнего трения

Коэффициент внешнего трения 95 — Влияние на него

Трение внешнее

Трение внешнее— Влияние критические состояния валов



© 2025 Mash-xxl.info Реклама на сайте