Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Валы Напряжения и деформации при

Напряжения и деформации при изгибе и кручении гибких валов [13]  [c.175]

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ ПРИ КРУЧЕНИИ ВАЛОВ КРУГЛОГО СЕЧЕНИЯ  [c.68]

Напряжения и деформации при кручении вала  [c.86]

Рассмотрим консольно закрепленный вал с массивным диском (рис. 14.11). При колебаниях этой системы напряжения и деформации диска ничтожно малы, поэтому его можно считать абсолютно жестким. С другой стороны, вал имеет значительные деформации, но его масса много меньше массы диска. В результате таких упрощений мы приходим к одномассовой системе из недеформируемого массивного диска и вала в виде невесомой упругой связи.  [c.241]


Расчет редукторов основан на формулах, приведенных в курсе Детали машин , и производится в соответствии с Правилами Регистра [31]. При выборе допускаемых напряжений и деформаций необходимо иметь в виду, что в штормовую погоду вследствие колебаний частоты вращения винта крутящий момент может возрастать на шестерне высокого давления на 25 %, а на шестерне низкого давления на 80 %. Резкие изменения направления вращений при маневрировании усиливают крутящий момент на шестернях примерно в 1,75—2 раза по сравнению с номинальным значением [26]. Помимо расчета редуктора на режим переднего хода производят проверочный расчет на режим заднего хода. Это вызвано тем обстоятельством, что на режиме заднего хода вся мощность передается через шестерни быстроходной и тихоходной пары от ТНД к гребному валу, в результате чего крутящие моменты в этих парах могут достигать значительной величины.  [c.302]

Фундамент редуктора должен быть прочным, жестким и при работе не допускать прогибов, смещений и нарушения центровки валов. Опорная плоскость корпуса редуктора должна равномерно и плотно прилегать к фундаментной раме и прочно закрепляться к ней. При затяжке фундаментных болтов нельзя допускать возникновения внутренних напряжений и деформаций в корпусе редуктора и нарушения центровки валов.  [c.197]

При прогреве разные части турбины прогреваются с различной скоростью. Быстрее прогреваются лопатки и диск, а затем вал и корпус турбины. Чем медленнее происходит прогрев турбины, тем меньше будет разность температур у отдельных ее частей и тем равномернее их тепловые расширения. Если прогрев турбины ведется неравномерно и быстро, то в деталях ее возникают опасные напряжения и деформации. Например, при быстром прогреве турбины может произойти ослабление посадки дисков на валу. Кроме того, так как удлинение вала значительно опережает по времени удлинение корпуса, может произойти задевание в проточной части или в концевых лабиринтовых уплотнениях. Фланцы турбины, имеющие большую толщину, чем корпус, прогреваются медленнее. Поэтому быстрый прогрев корпуса может вызвать коробление плоскостей разъема турбины и появление неплотностей в его соединениях. При парциальном впуске пара прогрев турбины ведется недостаточно равномерно быстрее прогревается та половина корпуса, в которой установлены сопловые сегменты.  [c.120]

Таким образом, обведенные формулы позволяют решить две основные задачи сопротивления материалов - определить напряжения и деформации вала при кручении.  [c.178]


В гл. 16 будет показано, что большинство муфт, вследствие неизбежной несоосности соединяемых валов, нагружают вал дополнительно силой Р . Примеры определения величины для некоторых типов муфт даны в той же главе. При расчете валов приближенно можно принимать Р = (0,2 -г- 0,5) Р , где Р — окружная сила муфты. Направление силы Р в отношении силы Р( может быть любым (зависит от случайных неточностей монтажа). В расчетной схеме (рис. 14.3, а) силу Р направляем так, чтобы она увеличивала напряжения и деформации от силы Р( (худший случай).  [c.304]

При соединении валов с помощью муфт из-за несоосности соединяемых валов муфты нагружают валы дополнительной силой При расчете валов условно принимают, что сила Рм IIР) увеличивает напряжения и деформации от силы Р Ри = (0,2... 0,5) где Р 1 — окружная сила муфты.  [c.189]

При сварке деталь нагревается неравномерно и изменяется структура металла. В сварочной ванне могут произойти и объемные изменения. Все это вызывает внутренние напряжения, из-за чего детали деформируются или даже трескаются. Внутренние напряжения уменьшают. предварительным подогревом деталей перед сваркой, термообработкой после сварки и медленным охлаждением. И технологические приемы позволяют уменьшить напряжения. Например, при наплавке оставляют возможно меньший припуск на последующую обработку, так как чем тоньше наплавленный слой, тем меньше окажутся внутренние напряжения и деформация. Тонкий листовой материал сваривают ступенями (рис. 114). Короткие швы сваривают от середины к концам. На валы металл наплавляют диаметрально (рис. 115), чтобы деформации уравновешивались.  [c.108]

Основные типы шпоночных соединений. Шпоночные соединения делятся на две группы ненапряженные и напряженные. Ненапряженные соединения осуществляются призматическими и сегментными шпонками, которые не вызывают деформацию ступицы и вала при сборке. Напряженные соединения осуществляются клиновыми шпонками, которые вызывают деформацию вала и ступицы при сборке.  [c.295]

При проектировании заготовок корпусных деталей, разработке технологического процесса их производства и во время изготовления необходимо принять все меры для уменьшения деформаций за счет неравномерного охлаждения, усадки или сварочных напряжений, особенно, если деталь имеет направляющие отверстия для установки валов, осей и т. п. Очень часто заготовки корпусных деталей после изготовления подвергают термообработке для снятия внутренних напряжений, стабилизации размеров, улучшения структуры и обрабатываемости резанием.  [c.229]

Жесткость. Рациональная жесткость достигается подбором таких размеров и материалов деталей и узлов, при которых деформации их ограничиваются пределами, обеспечивающими нормальные условия работы механизма. Деформации деталей механизмов возникают из-за действия сил, изменения температуры, наличия остаточных напряжений и приводят к изменению размеров и формы деталей, характера их сопряжения и существенно влияют на работоспособность механизма. Так, например, изгиб валов вызывает неравномерный износ, увеличение сил трения и даже заедание в подшипниках скольжения, ухудшает условия работы подшипников  [c.209]

Заметим, однако, что, как показал А. Ю. Ишлинский в статье О напряженном состоянии цилиндра при больших углах крутки (Прикладная математика и механика, том VII, 1943, вып. 3) эту задачу можно решить и на основе классической линейной теории упругости. Он изучил напряженно-деформированное состояние упругого круглого цилиндра при больших углах крутки в условиях, когда точки торцов в процессе деформации не перемещаются в направлении, параллельном оси цилиндра. Кроме отмеченного уже возникновения в поперечных сечениях вала нормальных напряжений, складывающихся в продольную силу, обнаружено, что, вследствие поперечной деформации продольных растягиваемых волокон, происходит уменьшение радиуса цилиндра. Наряду с этим возникают радиальные напряжения, равные нулю на боковой поверхности цилиндра и достигающие максимального значения в точках на оси цилиндра.  [c.34]


Однако в большинстве конструкций детали имеют различную длину вдоль оси, и выступающие концы вала, препятствуя его деформации, вызывают концентрацию напряжений в соединении. Последняя приводит к существенному снижению прочности соединений при переменных нагрузках, способствует развитию фреттинг-корро-зии.  [c.81]

Установка позволяет измерять как статические, так и динамические деформации при среднем сопротивлении проволочного датчика в 200 ом. Питание установки от сети переменного тока на 110/220 в (выпрямитель У). В установке используется вспомогательная несущая частота 2000 гц, вырабатываемая гетеродином II. Напряжение этой частоты модулируется по амплитуде за счёт изменения сопротивления датчика, включённого в одно из плеч моста на входе усилителя III. Установка допускает независимую работу одновременно трёх каналов. Один из них, кроме исследования деформации по одному датчику (аналогично двум первым каналам), позволяет вести по четырём датчикам измерение деформации кручения (в валах). Выход рассчитан на применение шлейфового осциллографа (1- -5 класса), стрелочного прибора или рекордера и катодного осциллографа. При работе на шлейф, стрелочный прибор и рекордер несущая частота подавлена полностью.  [c.238]

При использовании глухих муфт (табл. 6—9) характерным является случай соединения далеко отстоящих друг от друга валов посредством промежуточного вала малой жесткости. Наибольшие добавочные напряжения изгиба у сплошного промежуточного вала от его деформации, вызванной смещениями А и б  [c.668]

В отличие от рассмотренного варианта композитного диска с аустенит-ным ободом и перлитной центральной частью, условия работы аустенитного диска с приварными перлитными полувалами облегчены. Температура сварного соединения в данном случае относительно невелика и возможность возникновения дополнительных знакопеременных напряжений и пластических деформаций при циклических изменениях температуры практически исключены. Расчет сварного соединения производится обычными методами в соответствии с расчетами валов на передачу крутяш,его момента. Термические напряжения, вызванные разностью коэффициентов линейного расширения свариваемых материалов, при этом расчете обычно не учитываются.  [c.131]

Насадной диск упорного подшипника, вынесенного к переднему концу РВД, оказался на валу небольшого диаметра (около 100 мм). В месте его посадки при малом радиусе галтели возникали повышенные напряжения. Кроме того, под диском из-за изгибных деформаций тонкого вала обнаруживались явления фреттинг-коррозии . По этим причинам в неблагоприятных условиях (односторонняя передача силы на несколько колодок из-за неточностей монтажа и деформаций, повышенное против расчетного осевое усилие и пр.) были усталостные поломки вала, причинившие большой материальный ущерб. Анализ этих аварий был весьма поучителен. Безаварийно работали десятки турбин этого типа, а когда казалось, что надежность этих турбин уже проверена на практике, на одной из них, проработавшей уже длительное время, произошел обрыв вала. Надежность таких сложных машин, как турбины, во многом зависит от многолетней проверки их в различных условиях эксплуатации.  [c.9]

Из-за больших размеров, сложности конструкции и асимметрии температурных полей в корпусе ЦНД могут появляться высокие напряжения и, что особенно важно, значительные деформации, из-за которых приходится замедлять темпы прогрева. В роторах с очень массивными насадными дисками может создаваться большой радиальный градиент температур и, как следствие,— временное ослабление посадки дисков на валу, вызываюш ее вибрацию. Обычно эти диски имеют натяг при рабочей частоте вращения около 0,1 мм. Во время пуска разность радиальных удлинений вала и диска не должна превосходить эту величину.  [c.53]

В гл. II было показано, что при определенной, так называемой критической скорости вращения вал теряет устойчивую, почти прямолинейную, форму и начинает бить . Это явление, связанное с некоторой неизбежной динамической неуравновешенностью вала, нельзя назвать поперечными колебаниями в полном смысле слова, так как форма изогнутой оси вала в процессе движения почти не меняется (некоторая переменная деформация может возникнуть за счет неполной изотропии системы, т. е. различия ее упругих характеристик в вертикальной и горизонтальной плоскостях) и изгибные напряжения сохраняют в процессе движения почти постоянную величину. Тем не менее, представляя круговое (или в общем случае эллиптическое) движение вала в виде суммы поперечных колебаний в горизонтальной и вертикальной плоскостях, можно применить для его математического описания общие формулы поперечных колебаний. При таком представлении центробежные силы, сопровождающие вращение неуравновешенных элементов, играют роль возбудителя первого порядка относительно собственного вращения вала, т. е. такого возбудителя, частота которого равна скорости вращения вала (здесь и в дальнейшем под порядком возбудителя понимается отношение частоты его к скорости вращения вала). Совпадение частоты возбудителя с частотой свободных поперечных колебаний системы, имеющее место при вращении вала с критической скоростью, приводит к опасному росту изгибных деформаций и напряжений.  [c.225]

Все рассуждения велись до сих пор в предположении, что края диска свободны от действия внешних усилий. Эго предположение обычно не соответствует действительности. Посадка диска на вал выполняется в горячем состоянии или с помощью гидравлического пресса с таким натягом, чтобы деформация отверстия диска, вызванная центробежными усилиями, всегда была меньше, чем обратная ей по знаку, деформация при посадке диска, т. е. чтобы в рабочем состоянии диск плотно сидел на вале. Наружный край диска обычно снабжается ободом для закрепления в нем лопаток турбины, при вращении которого возникают дополнительные центробежные усилия, передающиеся на диск. Таким образом, по наружному и внутреннему краю диска обычно действуют некоторые равномерно распределенные растягивающие или сжимающие усилия. Вызванные этими усилиями напряжения в диске могут быть вычислены по формулам, выведенным для расчета толстостенных цилиндров (формулы (25.9) 144). Складывая напряжения по формулам (25.9), а также (29.9) и (29.10), получаем возможность построить полную картину распределения напряжений во вращающемся диске.  [c.498]


Колебания около положения равновесия становятся опасными для вала и конструкции в целом, когда частота возмущающей силы становится равной частоте собственных колебаний системы, т.е. когда наступает резонанс. При этом существенно возрастают амплитуды колебаний, т. е. существенно возрастают и деформации, и напряжения в вале, которые будут определяться, в основном, не внешней нагрузкой, а силами инерции колеблющихся масс.  [c.423]

Разгрузка. При малых деформациях разгрузку можно рассматривать как нагружение силами (моментами), равными по величине и противоположно направленными тем, какие были в конце нагружения. При разгрузке зависимость между напряжениями и деформациями становитея линейной, с тем же модулем упругости, который был на начальном участке нагружения. Таким образом, эпюра напряжений при разгрузке, рассматриваемой как нагружение противоположного знака, линейна. Максимальное напряжение в этой эпюре должно быть таким, чтобы момент, эквивалентный эпюре напряжений, линейно распределенных по радиусу поперечного сечения вала, был равен окончательному значению момента при нагружении. Если при нагружении имеет место диаграмма Прандтля, то  [c.40]

Как известно, гистерезис есть отклонение от закона Гука, устанавливающего линейную зависимость между напряжением и деформацией. Он имеет место в большинстве материалов, подвергающихся воздействию знакопеременных усилий. На диаграмме (рис. 17, а) закон Гука должен быть изображен наклонной прямой А1А3, и тогда точка, отображающая напряженное состояние волокна вала от попеременного действия растяжения и сжатия, должна была бы двигаться вверх и вниз вдоль этой прямой. В действительности же зависимость между напряжением и деформацией изображается длинной узкой фигурой, весьма похожей на эллипс, которую точка обходит всегда по часовой стрелке (эллипс, изображенный на рис. 17, а, имеет сильно преувеличенную ширину на самом деле он настолько узок, что его едва можно отличить от прямолинейного отрезка А А . Ширина петли зависит от заданных при исследовании предельных значений напря-  [c.57]

Усталостный износ. У современных погрузчиков имеется ряд узлов металлоконструкций и деталей трансмиссий, работающих при переменных и знакопеременных нагрузках. Переменной называют нагрузку, изменяющуюся при работе детали от О до некоторой постоянно направленной величины, а знакопеременной— нагрузку, изменяющую направление действия, например изгибающую ось попеременно в противоположных направлениях или растягивающую и затем сжимающую стержень (шток гидроцилиндра). Цикличными называют нагрузки, непрерывно изменяющие величину или направление действия в постоянный период времени. К нагружаемым циклично деталям относятся Стрелы, рукоятки и рамы, а также валы и оси зубчатьпг По прошествии определенного времени работы эти детали разрушаются обычно в сечениях, в которых действуют максимальные напряжения и деформации. Исследования мест изломов показывают изменения кристаллической структуры металла по сравнению с исходной структурой новой детали. Изменения происходят вследствие длительного воздействия переменных и знакопеременных нагрузок и напряжений, действующих при работе в сечении излома.  [c.314]

Пружинная затяжка (рис. 265,. VI) смягчает осенаправленные напряжения в системе, но не решает задачи радиального центрирования роторов и не обеспечивает неизменности их" осевого положения на валу. Плоскости симметрии роторов при тепловых деформациях смещаются в этом случае на величину, пропорциональную их расетоянию от фиксирующего буртика.  [c.390]

К этому времени относятся фундаментальные работы В. П. Ветчинкина (1888—19.55) но определению критического числа оборотов длинных валов, Б. Г. Галеркина (1871 —1945) но расчету пластин, Н. М. Беляева (1890— 1944) по теории пластических деформаций, проблемам усталости и ползучести металлов, контактных напряжений и т. д. Теория упруго-пластнче-ских деформаций развивается и используется для решения задач о сопротивлении как при статическом, так и при скоростном деформировании, что позволяет и в машиностроительных расчетах отразить принципы предельной несуш,ей способности. В 1938 г. Академией наук СССР была проведена первая научная конференция по пластическим деформациям, показавшая как новые результаты исследований в машиностроительной и строительной области, так и перспективы их развития.  [c.36]

Характер разрушения образцов существенно зависит от природы контактирующей детали (рис. 77). Ширина зоны фреттинг-пораженин L определяется жесткостью системы вал - втулка, амплитудой деформации и примерно соответствует зоне распространения максимальных переменных контактных напряжений. С понижением жесткости системы, уменьшением натяга и увеличением амплитуды циклических напряжений ширина зоны, подвергнутой фреттинг-коррозии, увеличивается. При испытании образцов с жесткими металлическими накладками под ними у торца, вследствие взаимного микроперемещения и высоких контактных давлений, протекают процессы микропластических деформаций, поверхность контактирующих металлов активируется и взаимодействует с окружающей средой, в частности, с кислородом. При этом образуются продукты фреттинг-коррозии, представляющие собой оксиды металла, а в отдельных случаях — тонкодисперсный металлический порошок.  [c.146]

Шлицевые валы, изготовленные методом пластического деформирования, имеют ряд существенных преимуществ по сравнению с валами, полученными фрезерованием. Как показали наши исследования, зерна в поперечном сечении сильно вытянуты в радиальном направлении (особенно в углу перехода боковой стороны шлица к впадине). Во впадине шлицевого вала глубина наклепанного слоя достигает 1,5—2,1 мм, на боковой стороне наклепанный слой значительно мень-шйй —0,3—0,7 м,м. При накатке шлицев обнаружена значительная неравномерность деформации. В поперечном сечении вала наибольшей деформации металл подвергается в местах перехода боковой стороны шлица к впадине. Неравномерность деформации приводит в свою очередь к неравномерности наклепа и твердости по сечению вала. Увеличение дробности деформации (т. е. увеличение числа проходов накатки) увеличивает глубину наклепанного слоя, а также размельчает зерна, в результате чего увеличивается твердость металла. В местах перехода от шлица к виадине зерна, сильно вытянуты и завихрены. В этих местах возможно появление самых больших напряжении, поэтому после пластической деформации валы следует подвергнуть термообработке. Для снятия остаточных напряжений 1-го рода и сохранения наклепа можно рекомендовать низкотемпературный отжиг.  [c.159]

При проектировании композитных дисков и роторов необходимо стремиться к симметрии сварного соединения и отсутствию эксцентрично расположенных швов. Это требование, суш,ественное для конструкции высокой точности, обусловлено возможностью появления дополнительных деформаций при механической обработке сваренного изделия за счет эффекта перераспределения остаточных напряжений. Применительно к варианту диска с приварными валами это требование сводится к обеспечению соосности деталей при сварке и отсутствию дополнительных угловых деформаций диска относительно валов, могущих при последуюш,ей механической обра-9 13  [c.131]

В турбинных дисках, изготовленных из жаропрочных сплавов, деформации ползучести соизмеримы с упругими деформациями, а иногда и меньше последних. Это, в частности, наблюдается при решении релаксационных задач, связанных с расчетом посадочного напряжения на вал. В турбинах, работающих сравнительно короткое время, начальная стадия неустановившейся ползучести может занимать значительную часть всей жизни диска. Эти вб-стоятельства требуют разработки более точных методов расчета напряженного и деформированного состояний неустановившейся стадии ползучести с использованием- физически более обоснованной теории упрочнения.  [c.110]


Методика расчета фланцевых соединений МКЭ с использованием контактных элементов является удобной и достаточно универсальной. Она позволяет успешно рассматривать конструкции различных типов и конфигурации при наличии прокладок и без них, с непосредственно прилегающими фланцами [32, учитывать температурные и пластические деформации, кусочную однородность подобластей соединения. Использование контактных элементов в роли прокладки позволяет описать одновременно ее геометрию, жесткость в направлении сжатия и определить условия взаимодействия, характеризующиеся отсутствием касательных напряжений в радиальном направлении. Результаты расчетов фланцевых соединений по предложенной методике имеются также в работе [77], где проводится сравнение с решением по технической теории оболочек. Решения контактных задач для фланцевых соединений валов гидротурбин с непосредственно прилегающими торцами приведены в рабзте [32].  [c.207]


Смотреть страницы где упоминается термин Валы Напряжения и деформации при : [c.524]    [c.255]    [c.524]    [c.494]    [c.495]    [c.94]    [c.212]    [c.636]    [c.161]    [c.137]    [c.43]    [c.342]    [c.53]   
Справочник машиностроителя Том 4 (1956) -- [ c.0 ]



ПОИСК



597 — Деформации и напряжения

Изгиб гибких проволочных валов Напряжения и деформации

Изгиб — Энергия деформации гибких проволочных валов — Напряжения и деформации

Кручение балок гибких проволочных валов — Напряжения и деформации

Напряжения и деформации при кручении вала

Напряжения и деформации при кручении валов круглого сечения

Напряжения касательные 5 —Зависимость от угловой деформации 277 Свойство парности поперечном сечении вала

Расчет напряжений и деформаций валов

Энергия вала потенциальная — Расчетные формулы деформации — Формулы 15 — Выражение через напряжения — Формулы



© 2025 Mash-xxl.info Реклама на сайте