Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение сохранения массы в дифференциальной форме форме

Это уравнение сохранения массы в дифференциальной форме называется уравнением неразрывности.  [c.133]

Уравнение сохранения массы в дифференциальной форме 133  [c.424]

Напряжения, скорости и плотность по обе стороны поверхности разрыва связаны между собой условиями, которые должны удовлетворять основным уравнениям механики сплошной среды и уравнениям состояния выбранной реологической модели. Основные уравнения механики сплошной среды лучше использовать в интегральном виде, так как для разрывных процессов интегральная формулировка физических законов по сравнению с дифференциальной обладает большей общностью. Для непрерывных же процессов интегральная и дифференциальная формулировки полностью эквивалентны [например, закон сохранения массы в интегральной форме (V.8) и дифференциальное уравнение неразрывности (V.10), закон сохранения импульса в интегральной форме (V.14) и дифференциальные уравнения движения (V.18)l. Используя закон сохранения массы (V.8) и закон сохранения импульса  [c.247]


Разлет и нагрев эрозионной лазерной плазмы. Для описания разлета плазмы в плоской геометрии нужно модифицировать уравнения гидродинамики идеальной жидкости [32] с учетом оптического воздействия. Уравнение непрерывности, выражающее в дифференциальной форме закон сохранения массы вещества, не изменяется  [c.172]

Отсюда с учетом уравнения (1.10) и в силу произвольности объема V следует уравнение сохранения массы i-ro компонента в дифференциальной форме  [c.13]

Состояния движущ,егося газа с известными термодинамическими свойствами определяются заданием скорости, плотности и давления как функций от координат и времени. Для нахождения этих функций используют систему уравнений, которая представляет собой выраженные в дифференциальной форме общие законы сохранения массы, импульса и энергии. Эти уравнения замыкаются термическим и калорическим уравнениями состояния.  [c.32]

В предыдущих главах были получены дифференциальные уравнения, представляющие собой запись основных законов сохранения. Закон сохранения массы в общем случае при наличии источников массы имеет вид (2.3) гл. II. При приведении уравнений, представляющих собой запись законов сохранения, к более простому виду предполагалось, что источники массы отсутствуют. Сохраняя это предположение и в дальнейшем, выпишем полученные в дифференциальной форме законы сохранения.  [c.70]

Уравнения неразрывности, являющиеся дифференциальным следствием постулата о сохранении масс в форме (16) имеют вид  [c.640]

Соотношения на фронте сильного разрыва. Известно, что при движении газа могут образовываться поверхности, при переходе через которые газодинамические функции терпят разрыв — возникают так называемые ударные волны (сильный разрыв). Уравнения газовой динамики, записанные в дифференциальной форме, имеют смысл в областях непрерывного течения. В общем случае уравнения газовой динамики нужно рассматривать в интегральной форме, например вида (1.7)—(1.9). Рассматривая уравнения (1.7)—(1.9) в окрестности поверхности разрыва, можно получить алгебраические соотношения, выражающие законы сохранения массы, импульса и энергии, которые должны выполняться при переходе через сильный разрыв.  [c.17]

Для определения параметров движущегося газа служит система дифференциальных уравнений газовой динамики, которая представляет собой выраженные в дифференциальной форме фундаментальные законы сохранения массы, импульса и энергии.  [c.5]


Для того чтобы отразить эллиптический тип исходных дифференциальных уравнений, давление в (м, и. Я)-системе необходимо определять, решая уравнение Пуассона так же, как это делалось в разд. 3.5. Методы, разработанные для анализа устойчивости решения (г , С)-системы, можно непосредственно применять и для исследования устойчивости решения (ы, и, Я)-системы. При линеаризации уравнений (3.509) члены с градиентом давления исчезают, а члены типа и ди/дх) приводятся к виду й ди/дх), где й — постоянный коэффициент. Тогда линеаризированное уравнение количества движения будет совпадать по виду с линеаризированным уравнением переноса вихря, и, следовательно, для исследования их устойчивости можно использовать одни и те же методы, получая при этом одни и те же условия устойчивости. Решать уравнение Пуассона для давления можно любым из методов, рассмотренных в разд. 3.1 и справедливых также в рассматриваемом случае по крайней мере с точки зрения линейного анализа устойчивости. Уравнениям количества движения можно придать простую консервативную форму, если, как и в случае уравнения переноса вихря, член У-Уи заменить на У-( У). Но применение идеи консервативности в отношении сохранения массы в этом случае осложняется. При решении уравнения Пуассона потребуется отказаться от консервативной формы уравнения неразрывности, в чем мы сейчас и убедимся.  [c.294]

Аналитическое и численное исследование задач гидрогазодинамики связано с применением основных законов сохранения (массы, импульса и энергии) в дифференциальной форме. Ранее уже говорилось, что для подземной гидромеханики характерно изотермическое изменение параметров. Таким образом, для таких процессов можно не рассматривать уравнение энергии и ограничиться уравнениями баланса массы (неразрывности) и количества движения (импульса).  [c.11]

Таким образом, гидромеханические процессы в общем случае описываются системой восьми уравнений. Причем уравнения баланса обычно записываются в дифференциальной форме, чаще всего в частных производных. Закон сохранения массы для рассматриваемой  [c.4]

Таким образом, дополнительное уравнение диффузии, представляющее собой закон сохранения массы компонента смеси, имеет вид (в дифференциальной форме)  [c.35]

Система уравнений газовой динамики, выражающая в дифференциальном виде законы сохранения массы, импульса и энергии, в декартовых координатах имеет следующую дивергентную форму  [c.40]

Учебник содержит систематическое изложение теоретических основ механики жидкости и газа в объеме курса, читаемого для соответствующей специальности. Он знакомит с методами расчета до-, около- и сверхзвуковых потоков, с расчетом двухфазных потоков, теорией пограничного слоя, расчетом течений при подводе теплоты, массы и т. п. Автор стремился обратить внимание на физическую сущность задач и расчетную сторону проблем, что важно для инженеров. Основные уравнения записаны в интегральной и дифференциальной формах с применением индексной записи. Это позволило сделать все преобразования компактными и наглядными особенно при рассмотрении общих случаев. Применение уравнений сохранения в интегральной форме дает возможность просто решать ряд инженерных задач.  [c.3]

В этом параграфе мы изучаем задачу о наличии инвариантных п-форм (формы объема на М) дифференциальных уравнений (1.2). Они играют роль плотностей и отвечают закону сохранения массы.  [c.118]

Уравнение (2.1) выражает закон сохранения массы веществ записанный в дифференциальной форме. Уравнение (2.2) — эт второй закон Ньютона дл я элемента сплошной среды выраж ние в квадратных скобках представляет собой ускорение — по. ную производную скорости по времени  [c.18]

Первое уравнение представляет собой обобщение второго закона Ньютона для сплощной среды. Второе (уравнение непрерывности)—закон сохранения массы вещества, записанный в дифференциальной форме. Третье —уравнение состояния, которое для быстрых (по сравнению с термодиффузией) процессов сжатия и разрежения, сопровождающих распространение звука, можно принять в форме адиабаты Пуассона.  [c.125]


Использование уравнений движения в строго консервативной форме позволяет построить консервативные разностные схемы, т. е. такие, для которых выполняются интегральные законы сохранения, справедливые для исходных уравнений. При этом важно, чтобы выполнялись законы сохранения не только полной энергии, но и дополнительные балансы по отдельным видам энергии [7]. Если уравнения движения в дифференциальной форме преобразовать таким образом, что искомыми переменными становятся консервативные величины р, ри р , то применение к этим уравнениям конечно-разностных схем, обладающих свойствами консервативности, обеспечивает в разностной форме сохранение массы, количества движения и энергии.  [c.77]

Дифференциальные уравнения законов сохранения массы, количества движения и энергии должны быть записаны в развернутом виде и, как правило, приведены к разностной форме. Кроме того,  [c.50]

Одинаковость математического описания аналогичных явлений имеет глубокие физические корни. Общность законов сохранения энергии, количества движения, массы и т. д., вытекающая из закона сохранения материи, и общность законов переноса энергии, количества движения и т. д. в физических полях приводит к тому, что распределения температуры, потенциала скорости, электрического потенциала, магнитной напряженности и т. д. в однородных потенциальных полях описываются одинаковыми по форме дифференциальными уравнениями.  [c.74]

Как видно из формулы (85.9), уравнение Больцмана представляет собой сложное нелинейное интегро-дифференциальное уравнение, приближенное решение которого возможно только в некоторых весьма частных случаях. Однако, как мы увидим в последующих параграфах, уравнение Больцмана позволяет получить ряд важных следствий весьма общего характера. Ограничиваясь рассмотрением только упругих столкновений и считая массы молекул одинаковыми, запишем законы сохранения импульсов и энергии при ударе в форме  [c.470]

Уравнения, представляющие собой запись законов сохранения, вместе с дополнительными соотношениями, содерлощимися в предыдущей главе, образуют систему уравнений гидромеханики. В главе VI на с. 70 была выписана система уравнений, представляющая собой запись в дифференциальной форме законов сохранения закона сохранения массы, закона количества движения, закона момента количества движения и закона сохранения энергии.  [c.81]

Равенство (3.15) аппроксимирует дифференциальное уравпепие неразрывности в форме (3.33) гл. I, которое мы назвали законом изменения объема . Соотношение (3.15 ) наглядно иллюстрирует смысл этого закона применительно к массовому интервалу сетки. Оно часто используется в расчетах вместо уравнения неразрывности (3.3). При несоблюдении условия (3.14) указанное разностное соотношенне для объема нарушается. Наметим < ще, что закон сохранения массы в схеме (3.1) — (3.4), записанной в лаграижевых массовых координатах, выполняется тривиальным образом. Сформулированные памп условия (3.8), (3.12), (3.14), которые мы перепишем еще раз в виде  [c.119]

Метод интегральных соотношений позволяет исходные уравнения записызать в дивергентной форме. Именно в дивергентной форме могут быть представлены дифференциальные уравнения механики и термодинамики, выражающие законы сохранения массы, количества движения, энергии. При этом можно аппроксимировать не сами неизвестные функции, а некоторые комплексы от них, стоящие иод интегралом и обычно имеющие определенный физический смысл, например количества подведенного Q или аккумулированного тепла 2. Широкий выбор интерполяционных выражений и проекционных функций j( ), учитывающих характер решения, позволяет получить достаточно точные результаты уже при сравнительно небольшом числе приближений.  [c.96]

Математическое описание задач тепло- и мас-сопереноса включает в себя, как правило, систему из нескольких взаимосвязанных дифференциальных уравнений переноса, каждое из которых по форме отвечает уравнению (5.74). В качестве примера в табл. 5.2 приведены коэффициенты диффузии и источниковые члены дифференциальных уравнений переноса, выражающих законы сохранения массы, импульса и энергии и описывающих в декартовой системе координат теплообмен при ламинарном течении вязкой химически однородной жидкости [52, 63]. В уравнениях переноса импульса члены, описывающие вязкие напряжения и не вощедщие в член div( igrad и ), (3 = X, у, z,  [c.150]

Важным требованием црп численном моделпровапнп негладких или ударно-волновых динамических процессов является выполнение дискретных аналогов интегральных законов сохранения массы, импульса, энергии и термодинамического неравенства (второго закона термодинамики) [20, 161, 192], в частности построение разностных схем, аппроксимирующих дивергентные формы дифференциальных уравнений в частных производных [74, 75]. Эти требования входят в понятие консервативности разностных схем и полной консервативности [46, 47, 101, 162], при которой для копечио-разпостпой или дискретной системы также выполняются определенные эквивалентные преобразования, аналогичные дифференциальным преобразованиям системы уравнений в частных производных.  [c.27]

Уравнения конвекции выражают несколько физических законов сохранения (тепла, массы, завихренности). Дифференциальные уравнения получаются из законов сохранения (уравнений баланса) при достаточной гладкости функций, входяш,их в эти уравнения. В теории и практике метода сеток широко известен интегро-интер-поляционный метод построения разностных схем [12, 14], когда дискретизации на сеточном шаблоне подвергается не дифференциальное уравнение, а соответствую-ш,ее ему уравнение баланса. Метод позволяет конструировать схемы, отражающ,ие в дискретной форме интегральные законы сохранения на сколь угодно больших и на сколь угодно малых участках сеточной области. Такие схемы называются консервативными, или дивергентными. Консервативные схемы, как правило, улучшают точность решения, особенно в качественном отношении. Разностный оператор консервативных схем обладает свойством самосопряженности, которое является одним из определяющ,их условий сходимости различных итерационных алгоритмов решения разностных задач.  [c.53]


Поскольку уравнения неразрывности и Навье — Стокса выражают физические законы сохранения массы и импульса, ясно, что все следствия из этих уравнений, выведенные в настоящем пункте, также представляют собой следствия указанных физических законов. Почти сразу же после появления первых работ по теории изотропной турбулентности Прандтлем было замечено, что, например, соотношение Кармана (14.3) может быть получено из интегральной формы закона сохранения массы без перехода к дифференциальному уравнению (1.6) (см. Вигхардт (1941)). В дальнейшем в работах Маттиоли (1951) и Хассельмана (1958) было показано, что аналогичный вывод, использующий лишь интегральную форму законов сохранения массы и импульса, возможен также и для соотношений (14.4), (14.5) и (14.9).  [c.111]

Численное решение получаемых уравнений в форме системы обыкновенных дифференциальных уравнений (законов сохранения импульса для каждого узла — сосредоточенной массы) осуществляется в виде явной схемы по времени (3.2.5). При этом по заданным узловым скоростям с предыдущего полуцелого временного слоя определяются приращения в узлах, (Аеар)е в элементах, А ,- на узловых линиях стыковки элементов. Далее по реологическим соотношениям упруговязкопластического деформирования вычисляются напряжения в элементах и моменты в узловых линиях затем рассчитываются обобщенные внутренние силы в узлах используя уравнения движения, определяются ускорения в узлах и новые скорости для следующего шага по А . Таковы главные этапы алгоритма явной однородной схемы расчета дискретной модели.  [c.97]


Смотреть страницы где упоминается термин Уравнение сохранения массы в дифференциальной форме форме : [c.19]    [c.26]    [c.31]    [c.133]    [c.92]    [c.13]   
Газовая динамика (1988) -- [ c.134 ]



ПОИСК



Массы сохранение

Сохранение

Уравнение сохранения массы

Уравнение сохранения массы в дифференциальной в форме Лэмба — Громеки

Уравнение сохранения массы в дифференциальной форме

Уравнение сохранения массы в дифференциальной форме

Уравнение сохранения массы в дифференциальной форме в интегральной форме

Уравнения сохранения

Уравнения форме

Форма дифференциальная

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте