Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость звука характеристики

Различают течения газа со скоростью, меньшей и большей скорости звука характеристики этих течений существенно различны. Значения параметров, при которых происходит переход от дозвуковых к сверхзвуковым течениям, называют критическими,  [c.455]

Через такую характеристику газ течет, причем относительно характеристики по нормали к ней — со скоростью звука. Характеристики этого типа называются звуковыми характеристиками. Ясно, что скорость распространения звуковой характеристики, в направлении нормали к ней, по частицам газа равна скорости звука.  [c.59]


Поскольку при этом скорость потока значительно меньше скорости звука, характеристики прямого и обратного направлений соответственно имеют вид  [c.105]

Одной из экстремальных характеристик в плоскости а, О является прямая а = -к 12. В работе [34] выяснено, что поверхность перехода через скорость звука, опирающаяся на некоторый контур и являющаяся одновременно характеристической поверхностью, обладает минимальной площадью среди всех поверхностей, опирающихся на тот же контур. В осесимметричном случае такими поверхностями могут быть либо плоскости перпендикулярные к оси симметрии, либо поверхности, образующие которых являются цепными линиями. Во втором случае угол 9 меняется на характеристике. Следовательно, упомянутая экстремаль в плоскости Хуу должна быть цепной линией. Однако, трудно ожидать, чтобы в окрестности всякой характеристической поверхности, на которой а = я /2, существовало решение задачи Коши или некоторой краевой задачи. Этот вопрос представляет собой предмет самостоятельного исследования. Здесь можно указать, что в осесимметричном изэнтропическом случае, когда газ является совершенным, такое решение не существует.  [c.88]

Рассматривается газовый поток, имеющий скорость звука на прямой О А в меридиональной плоскости течения (рис. П1), и параллельный оси симметрии X. Если вниз по потоку канал расширяется и его образующая САВ имеет излом в точке А, то скорость течения становится сверхзвуковой и из точки излома выходит пучок характеристик с номерами х-Вне окрестности прямой О А течение без труда можно рассчитать, например, методом характеристик. Для этого предварительно необходимо определить трансзвуковое течение в окрестности О А.  [c.224]

Основное свойство характеристики, как уже известно, состоит Б том, что нормальная к ней составляющая скорости равна скорости звука а, но характеристика совпадает с радиусом-вектором, поэтому в выбранной нами полярной системе координат нормальная составляющая скорости может быть найдена из условия  [c.159]

Характеристики первого и второго семейства наклонены к вектору скорости (к линии тока) под углом Маха а. Следовательно, проекция скорости на нормаль к характеристике всегда равна скорости звука.  [c.176]

Полученные в 2 результаты справедливы, однако, только в том случае, когда приведенная скорость на входе в трубу поддерживается постоянной, что требует создания вполне определенного перепада давлений в потоке для каждого режима и каждого значения приведенной длины трубы. В действительности чаще всего бывает наоборот заданной величиной является перепад давлении между входным и выходным сечениями трубы, а величины скорости, расхода и других параметров течения определяются действующим перепадом давлений и сопротивлением на рассматриваемом участке трубы. Для потока во входном сечении трубы наиболее характерной величиной, которая обычно известна или может быть легко определена, является полное давление Рх, для характеристики потока на выходе из трубы важно знать статическое давление во внешней среде или резервуаре, куда вытекает газ из трубы р . Если скорость потока в выходном сечении меньше скорости звука, то статическое давление потока, как известно, равно внешнему давлению, то есть Р2 = Ри. Если А,2 = 1, то в выходном сечении трубы р2 Ри- Наконец, при > 1 возможны также режимы, когда рг < Рв-  [c.260]


Величина равнодействуюш ей зависит от числа М1 и степени разрежения е. Очевидно, что при фиксированных значениях первых двух величин равнодействующая возрастает с уменьшением е. При некотором значении е осевая скорость далеко за решеткой достигает скорости звука, и характеристика становится параллельной фронту решетки. В атом случае имеющиеся возмущения (за решеткой) не распространяются вверх по потоку. При повышении давления за решеткой (е > 1) в выходной части межлопаточного канала образуется система скачков, приводящая к повышению давления на нижней поверхности и возникновению силы, действующей в положительном направлении оси п. С возрастанием рг эта сила увеличивается, а угол отставания уменьшается. При некотором значении рг = рг шах и соответственно е = Вшах в межлопаточном канале образуется прямой скачок, и на выходе из решетки устанавливается дозвуковой поток с нулевым углом отставания.  [c.89]

В сверхзвуковом потоке, т, е. при w4> с, дифференциальное уравнение (9.75) решается методом характеристик. Чтобы дать понятие об этом методе, рассмотрим распространение слабых возмущений в сверхзвуковом потоке газа. Слабые возмущения, как мы знаем из 9.3, распространяются в газе со скоростью звука. Это означает, что если в данной точке потока газ подвергается слабому возмущению, то влияние этого возмущения распространяется только вниз по течению, так что возмущенная зона будет представлять собой вначале конус с вершиной в точке, где возникло возмущение. Для угла раствора этого конуса 2а справедливо соотношение sin а == IW, а на боковой поверхности конуса составляющая скорости газа, перпендикулярная к поверхности конуса (или, что то же самое, к линии слабых возмущений), равна местной скорости звука, т. е. Wn = с если бы это было не так, то линии слабых возмущений не занимали бы устойчивого положения. Поверхность, ограничивающую область потока, куда достигает исходящее из данной точки возмущение, называют характеристической поверх-ностью.  [c.329]

Прямое использование цикла Карно для измерения температуры обычно приводит к большим экспериментальным погрешностям. Поэтому разработаны практические методы воспроизведения термодинамической температуры, в которых связь между измеряемой величиной и температурой выводят на основе законов термодинамики или статистической физики. К числу таких соотношений относятся уравнение состояния газа, закон Кюри для парамагнетиков, зависимость скорости звука в газе от температуры, зависимость напряжения тепловых шумов на электрическом сопротивлении от температуры, закон Стефана — Больцмана. Температурные шкалы, установленные с использованием указанных соотношений, зависят от свойств термометрического тела, что приводит к появлению таких характеристик шкалы, как воспроизводимость и точность. Кроме того, некоторые шкалы основаны на приближенно выполняющихся закономерностях возникает понятие инструментальной температуры (магнитной, цветовой и т. п.), отличной от термодинамической.  [c.172]

Определите углы наклона характеристик в заданной точке потока, если составляющие скорости в этой точке V— = 320, Уу = 150 м/с, а скорость звука а = 280 м/с.  [c.139]

Существование единственного решения следует из возможности однозначного определения его методом характеристик. Рассмотрим этот вопрос на примере одномерного нестационарного изоэнтропического течения газа в сопле. В этом случае существуют два семейства характеристик. Характеристические соотношения в форме (2.66) связывают дифференциалы скорости и и скорости звука а.  [c.51]

При решении прямой задачи для стационарного течения газа в сопле необходимо удовлетворить условию непротекания на контуре сопла. Если в некоторой области сопла течение полностью сверхзвуковое, то для определения течения в этой области необходимо задать все искомые функции на некоторой поверхности АВ (рис. 2.4). Эта поверхность может быть произвольно ориентированной в пространстве, необходимо лишь, чтобы в каждой точке на ней скорость была больше скорости звука. Единственность решения следует из возможности однозначного построения решения методом характеристик.  [c.52]

Число М также существенно влияет на величину сопротивления и на другие аэродинамические характеристики. Для обычных самолетов существует так называемый звуковой барьер, который характеризуется тем, что при приближении скорости самолета к скорости звука коэффициент лобового сопротивления резко возрастает и дальнейшее увеличение скорости сопряжено с необходимостью значительного увеличения мощности двигателя. Число М, при котором где-либо вблизи обтекаемого тела скорость газа достигает местной скорости звука, что приводит к резкому увеличению сопротивления, называется критическим числом М и обозначается М р (рис, Х.2). Значение М р для крыла меняется в пределах 0,7—0,8. Для уменьшения лобового сопротивления строят самолеты со стреловидным крылом. При этом М,ф возрастает до 1,5—2,0 и несколько больше.  [c.231]


Если известны скорость газа да, давление р и температура Т, то по формулам (77.7) могут быть определены местная скорость звука с и плотность газа р характеристики этого газа, но приведенного к состоянию покоя, вычисляются по следующим формулам по формуле  [c.295]

Кроме термических коэффициентов, важной характеристикой вещества является скорость звука.  [c.104]

Важной характеристикой потоков сжимаемого газа является число Маха M.= wja, равное отношению скорости потока к скорости звука. В данном случае  [c.180]

Изменение скорости звука вследствие неоднородности химического состава материала, разброса средней величины кристаллитов (для металлов) и изменение характеристик поверхностных слоев (для чугуна в особо неблагоприятных случаях до 5%). Эти изменения полностью входят в погрешность измерений.  [c.275]

При контроле прочности изделия используют связь скорости звука и механических характеристик материала. Так, прочность бетона коррелирует со скоростью звука. Характер этой связи зависит от упругих параметров цементно-песчаного раствора, заполнителя и его объемной концентрации и при изменении состава бетона может изменяться. Установлено, что с изменением водоцементного отношения, вида цемента и добавок типа песка, размера частиц заполнителя, а также срока службы бетона, связь скорость— прочность не нарушается. Количество и качество заполнителя не в равной степени изменяют скорость звука и прочность бетона, поэтому необходимо  [c.309]

Большое значение при исследовании газового потока имеет скорость звука а, которая является характеристикой сжимаемости газа. В газе с меньшей сжимаемостью скорость звука больше, чем в газе с большей сжимаемостью.  [c.67]

Изменение температуры газа в пограничном слое, показанное на рис. 10-1, нарастает по мере увеличения скорости потока. Для характеристики режима течения в газодинамике вводится понятие числа Маха, равного отношению местной скорости потока w к скорости звука с в той же точке потока  [c.292]

В ближайшее время на авиалиниях малой протяженности, не имеющих взлетно-посадочных полос с искусственным покрытием, будут введены уже упоминавшиеся 24-местные пассажирские самолеты Як-40 с турбовентиляторными двигателями, сочетающие простоту и эксплуатационную надежность поршневых самолетов типа Ли-2 и Ил-14 с достоинствами современных реактивных воздушных кораблей, и легкие 15-местные турбовинтовые самолеты Бе-30, спроектированные в ОКБ Г. М. Бериева. Для магистральных линий в ОКБ А. Н. Туполева закончена постройка нового пассажирского самолета Ту-154 с турбовентиляторными двигателями, рассчитанного на перевозку до 160 пассажиров со скоростью 900—950 km 4u . Наконец, в том же конструкторском коллективе — на основе накопленного опыта и широкого кооперирования со многими исследовательскими и проектными организациями — начаты доводка и испытания первого в Советском Союзе сверхзвукового пассажирского самолета Ту-144, предназначаемого для перевозки 110—120 пассажиров на большие расстояния со скоростью, вдвое превышающей скорость звука. Тщательно продуманная аэродинамическая компоновка этого самолета без горизонтального хвостового оперения, с тонким крылом конической формы в плане обеспечит минимальное сопротивление полету на сверхзвуковых скоростях и получение взлетно-посадочных характеристик, удовлетворяющих, требованиям удобства и безопасности эксплуатации. Четыре мощных реактивных двигателя самолета по соображениям улучшения аэродинамических свойств крыла и снижения шума в пассажирском салоне размещены в хвостовой части фюзеляжа. Совершенная система управления и сложный комплекс различных автоматических устройств обусловят регулярность и надежность полетов практически в любых метеорологических условиях.  [c.403]

ДОСТИЧЬ предельной величины, равной 40% скорости звука. Катастрофический рост трещины, приводящий к разрущению образца, зависит от ее размеров и способа приложения нагрузки. Используя соответствующие методы испытаний и учитывая форму образца, можно контролировать рост трещины и измерять затрачиваемую при этом энергию. На основе полученных данных определяют вязкость разрушения, которая является важнейшей характеристикой материала.  [c.98]

Теплота взрыва — количество теплоты, выделяемой при взрыве одного килограмма вещества. Температура взрыва — максимальная температура нагрева газообразных продуктов за счет теплоты взрыва. Теплота и температура взрыва определяют мощность взрывчатого вещества. Скорость детонации — это скорость перемещения фронта химического превращения взрывчатых веществ Б газообразные продукты взрыва. Скорость детонации определяют силовые и скоростные характеристики процесса деформации металлов в момент взрыва. Скорость детонации зависит от размеров заряда, его плотности, величины частиц взрывчатого вещества. Установлено [206], что лучшие результаты по сварке металлов получаются в случае, когда скорость детонации равна или меньше скорости звука в соединяемом металле.  [c.162]

Характеристики скорости абсолютные скорости (падения маятника V или скорость встречи бойка с преградой Vq), скорость относительной деформации г и скорость волновых процессов (скорость звука С в данном материале), а также безразмерное отношение скорости деформации или трещины к скорости звука v/ .  [c.177]


Влияние на упругие характеристики. Упругие характеристики металлов (Е, р,) практически не зависят от скорости деформирования, так как сама упругая деформация распространяется в теле со скоростью звука, намного превышающей скорость приложения нагрузки. Как известно, упругие свойства тела и скорость звука связаны между собой. Звук представляет собой механические колебания, распространяющиеся в упругой среде i).  [c.277]

Завлсимость скорости распространения ультразвука в жидкостях от величины адиабатической сжимаемости определяет изменение скорости ультразвука в жидкой среде при изменении температуры и давления. Сжимаемость всех жидкостей, в том числе и смазочных масел, сильно увеличивается при повышении температуры и понижается при увеличении давления, что и вызывает соответственно либо уменьшение, либо увеличение скорости звука. Характеристики твердого тела, а именно — детали узла трения во время работы остаются практически неизменными, не меняется ни состав, ни размеры, поэтому скорость распространения звука в деталях, находящихся в контакте, остается постоянной. Параметры смазочного слоя во время работы непрерывно меняются, толщина слоя, давление в нем, температура взаимосвязаны, поэтому изменение одного из их влечет изменение других. Скорость распространения звука в этом случае не может оставаться постоянной. Поскольку  [c.292]

Характеристики океанской среды и границы океана, оказывающие влияние на распространение звука, сложным образом зависят от многих параметров. Так, скорость звука является функцие температуры, глубины и солености. Температура в свою очередь определяется глубиной, временем, районом и погодными условиями. Поверхность может быть идеально гладким отражателем или чрезвычайно неровной, рассеивающей звук случайным образом. Существенное влияние на распространение оказывают состав грунта, наклон дна и его структура. Совокупность факторов, зависящих от скорости звука, характеристик дна и поверхности, в конечном итоге и определяет характеристики распространения звука.  [c.111]

Кирквуда — Бете) распространяются от пузырька вдоль характеристики первого семейства dridt = и + j, где j — скорость звука в чистой жидкости. Эти гипотезы, по-видимому, выполняются при рсх, onst (см. обсуждение (4.2.41) и (4.2.42)). Гипотеза Триллинга — Херринга приводит к уравнению  [c.269]

Определение 6. Пусть в задаче сверхзвукового обтекания одного жесткого контура рассматривается ударная волна. Касательная к ударной волне образует положительный угол а с направлением вектора скорости набегающего потока, но этот угол меньше того, при котором скорость за ударной волной равна скорости звука. Пусть, далее, из произвольной точки М контура проведена характеристика первого семейства до пересечения с ударной волной в точке N. Функция а = aт tgy, где у = ь х) определяет линию ударной волны, принадлежит классу Е, если кривизна линии у = ь х) в каждой точке N не меньше, чем ее значение, отвечающее кривизне контура в точке М равной -оо.  [c.63]

Говоря о возмущении состояния газа, мы подразумеваем слабое изменение каких-либо характеризующих это состояние величии скорости, плотности, давления и т. и. По этому поводу необходимо сделать следующую оговорку со скоростью звука не распространяются возмущения значений энтропии газа (при постоянном давлении) и ротора его скорости. Эти возмущения, раз возникнув, не перемещаются вовсе относительно газа, а относительно неподвижной системы координат переносятся вместе с газом со скоростью, разной скорости каждого данного его элемента. Для энт[)опни это является непосредственным следствием закона ее сохранения (в идеальной жидкости), который как раз и означает, что энтропия каждого элемента газа остается постоянной при его перемещении. Для ротора скорости (завихренности) то же самое следует из закона сохранения циркуляции. Для этих возмущений характеристиками являются сами линии тока.  [c.444]

Для одномерного нестационарного двимсения можно ввести характеристики как линии в плоскости х, t, угловой коэффициент которых dx/dt равен скорости распространения малых возмущений относительно неподвижной системы координат. Возмущения, распространяющиеся относительно газа со скоростью звука в полол ительном или отрицательном направлении оси х, перемещаются относительно неподвижной системы со скоростью v -f- с или V — с. Соответственно дифференциальные уравнения двух семейств характеристик, которые мы будем условно называть характеристиками С+ и С , гласят  [c.542]

Если осевая составляющая скорости потока, набегающего на решетку пластин при нулевом угле атаки, больше или равна скорости звука, то при уменьшении давления за решеткой, по сравнению с его значением перед ней, силового воздействия потока на пластину не будет. Это связано с тем, что при Ми = = Ml sinu 1,0 характеристика на выходе или совпадает с фронтом (при Мгд = 1,0) или выходит за пределы решетки (при Ми > 1,0) и, следовательно, любое уменьшение давления вверх по пластине не передается.  [c.84]

Скорость звука. Кроме термических коэффициентов важной характеристикой веи1ества является скорость звука. Под скоростью звука поним,ают скорость распространения в теле малых возмущений, в частности, упругих волн малой амплитуды (слабые упругие волны называются з в у к о -в ы м и).  [c.77]

В случае дозвуковой кромки, располагающейся внутри конуса Маха-с углом при вершине р.< = ar sin (1/М< ) (рис. 1.8.7,б), нормальная к этой кромке составляющая скорости меньше скорости звука (Voon СПоо, <1) и, таким образом, оперение находится в условиях дозвукового обтекания. В этих условиях оказывается невыгодным применение оперения с заостренной кромкой. Можно улучшить условия обтекания и добиться более благоприятных аэродинамических характеристик, слегка закруглив переднюю-кромку.  [c.66]

Задача о поршне. Рассмотрим в заключени е этого параграфа расчет нестационарного одномерного течения, возникающего при выдвижении из полубесконечной цилиндрической трубы поршня по закону x = X i). Пусть заданы параметры покоящегося газа в области между дном трубы (j = xo) и поршнем, т. е. на характеристике АВ имеем и—О, скорость звука а=ао и давление р=ро. Необходимо определить параметры течения в области, ограниченной траекторией поршня и стенкой (рис. 4.8).  [c.129]

Для малосжимаемых жидкостей и газов при, больших изменениях давления Ар изменение плотности будет малым, а скорость звука — большой, а для сильно сжимаемых жидкостей при малых Др изменение плотности Др будет большим, а скорость звука— малой. Следовательно, характеристикой сжимаемости жидкостей и газов в состоянии покоя служит скорость звука в данной среде. Чем больше скорость звука, тем меньше сжимаемость этой среды. Очевидно, что сжимаемость воды, скорость звука в которой 1500 м/с значительно меньше сжимаемости воздуха, в котором ско--рость звука около 300 м/с. В несжимаемой среде (Др = О при Др ф 0) а = оо, т. е. малые возмущ,ения распространяются мгновенно.  [c.12]

Особым случаем являются скачки и волны в пузырьковых н пеп-ных потоках, где величина скорости звука резко падает, достигая, в зависимости от структуры потока и его частотных характеристик, нескольких метров в секунду. Эксисрпмептально такие явления обнаружены в камере смегиения инжектора, а также при нестационарном  [c.273]


Одним из важных элементов, определяющих эксплуатационные характеристики наклонных преобразователей является призма. При разработке этих ПЭП размеры, форму и материал призмы надо выбирать таким образом, чтобы она имела наилучшую реверберационно-шумовую характеристику и по возможности удовлетворяла следующим требованиям обеспечивала эффективное затухание колебаний, переотраженных от границы раздела призма — изделие и распространяющихся в призме, и в то же время не сильно ослабляла ультразвуковые волны на коротком участке пути от пьезоэлемента до изделия (см. рис. 3.4). Скорость звука в материале призмы по возможности должна быть минимальной, так как чем меньше скорость продольных волп в материале призмы, тем выше коэффициент преломления (трансформации) п и меньше вероятность образования поверхностной волны при прозвучивании нижней части шва прямым лучом. Призмы с малой скоростью звука обеспечивают более поздний приход полезного сигнала по сравнению с реверберационными помехами. Кроме того, малая скорость звука увеличивает путь, по которому акустические помехи попадают на пьезоэлемент.  [c.147]


Смотреть страницы где упоминается термин Скорость звука характеристики : [c.32]    [c.49]    [c.161]    [c.74]    [c.299]    [c.108]    [c.51]    [c.313]    [c.417]    [c.182]   
Теоретическая гидромеханика Часть2 Изд4 (1963) -- [ c.27 ]



ПОИСК



Звук характеристики

Концентрационная характеристика скорости звука

Скорости Характеристики

Скорость звука

Скорость звука. Нелинейные механические характеристики жидкостей. Поглощение звука в жидкостях Распространение звука в твердых телах

Условия достижения в коммуникационных каналах скорости передачи сигналов, равной скорости распространения звука в рабочей среде. Влияние отражения волн на конце канала на характеристики изменения выходного давления и расхода



© 2025 Mash-xxl.info Реклама на сайте