Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Звук характеристики

Допустимые уровни звукового давления в октавных числах частот / 63 125 250 500 1000 2000 4000 8000 Гц и эквивалентные уровни звука (характеристика А) на рабочих местах для широкополосного шума принимаются 40. . . 100 дБ [50. . . . .. 85 дБ (характеристика А)], тонального и импульсного шума на 5 дБ меньше.  [c.171]

Рассматриваются фокусировка, параметрическая генерация, обращение волнового фронта и другие эффекты применительно к акустике, а также такие важные в практическом отношении вопросы, как параметрическое излучение и прием звука, характеристики поля мощного акустического излучателя и другие.  [c.2]


ВЫСОТА ЗВУКА — характеристика слухового восприятия, позволяющая распределить звуки по шкале от низких до высоких звуков. Зависит преимущественно от частоты, но также от величины звукового давления и формы волны,  [c.293]

Различают течения газа со скоростью, меньшей и большей скорости звука характеристики этих течений существенно различны. Значения параметров, при которых происходит переход от дозвуковых к сверхзвуковым течениям, называют критическими,  [c.455]

Через такую характеристику газ течет, причем относительно характеристики по нормали к ней — со скоростью звука. Характеристики этого типа называются звуковыми характеристиками. Ясно, что скорость распространения звуковой характеристики, в направлении нормали к ней, по частицам газа равна скорости звука.  [c.59]

Плоские поршневые излучатели. Рассмотренные выше сферические излучатели представляют собой, как уже говорилось, очень сильно идеализированные модели, удобные для выяснения физической природы важнейших закономерностей, относящихся к излучению звука. Характеристики направленности и частотные характеристики компонент сопротивления излучения реальных излучающих систем значительно сложнее и, как правило, не поддаются аналитиче-  [c.105]

Поскольку при этом скорость потока значительно меньше скорости звука, характеристики прямого и обратного направлений соответственно имеют вид  [c.105]

Влияние сжимаемости обеих фаз также можно учесть в уравнении (5. 3. 37) при условии (gH < 1.0 (где — скорость распространения звука в фазе у). Характеристиками уравнения (5. 3. 37) снова будут значения А=и, два значения л, определенные при помощи соотношения (5. 3. 41) и значения По+Со, где  [c.202]

Одной из экстремальных характеристик в плоскости а, О является прямая а = -к 12. В работе [34] выяснено, что поверхность перехода через скорость звука, опирающаяся на некоторый контур и являющаяся одновременно характеристической поверхностью, обладает минимальной площадью среди всех поверхностей, опирающихся на тот же контур. В осесимметричном случае такими поверхностями могут быть либо плоскости перпендикулярные к оси симметрии, либо поверхности, образующие которых являются цепными линиями. Во втором случае угол 9 меняется на характеристике. Следовательно, упомянутая экстремаль в плоскости Хуу должна быть цепной линией. Однако, трудно ожидать, чтобы в окрестности всякой характеристической поверхности, на которой а = я /2, существовало решение задачи Коши или некоторой краевой задачи. Этот вопрос представляет собой предмет самостоятельного исследования. Здесь можно указать, что в осесимметричном изэнтропическом случае, когда газ является совершенным, такое решение не существует.  [c.88]


Рассматривается газовый поток, имеющий скорость звука на прямой О А в меридиональной плоскости течения (рис. П1), и параллельный оси симметрии X. Если вниз по потоку канал расширяется и его образующая САВ имеет излом в точке А, то скорость течения становится сверхзвуковой и из точки излома выходит пучок характеристик с номерами х-Вне окрестности прямой О А течение без труда можно рассчитать, например, методом характеристик. Для этого предварительно необходимо определить трансзвуковое течение в окрестности О А.  [c.224]

СУБЪЕКТИВНЫЕ ХАРАКТЕРИСТИКИ ЗВУКА.  [c.165]

Чтобы возникло ощущение звука, волны, распространяющиеся в воздухе или другой упругой среде, достигшие уха человека, должны иметь частоту от 16 до 20 000 Гц (см. 59). Кроме того, давление звука должно превышать некоторую минимальную величину, Конечно, в каждой точке среды давление непрерывно колеблется и поэтому для характеристики звука в акустике используют среднеквадратичное или эффективное звуковое давление рэф=  [c.230]

Интенсивность звука, создаваемого каким-либо источником, зависит не только от характеристики источника, но и от помещения, в котором он находится. В каждую точку пространства внутри помещения наряду со звуком, идущим от источника, приходит также звук, многократно отраженный от стен, который называется диффузным (рассеянным) звуком. После прекращения действия источника звука диффузный звук исчезает не сразу. Это объясняется тем, что еще в течение некоторого времени приходят отраженные от стен волны. Такое явление затягивания звука после прекращения действия его источника называется реверберацией. Время, необходимое на то, чтобы звук в помещении после прекращения действия его источника полностью исчез, называют временем реверберации. Условно считают, что время реверберации равно промежутку времени, в течение которого интенсивность звука ослабевает в миллион раз.  [c.236]

Основное свойство характеристики, как уже известно, состоит Б том, что нормальная к ней составляющая скорости равна скорости звука а, но характеристика совпадает с радиусом-вектором, поэтому в выбранной нами полярной системе координат нормальная составляющая скорости может быть найдена из условия  [c.159]

Характеристики первого и второго семейства наклонены к вектору скорости (к линии тока) под углом Маха а. Следовательно, проекция скорости на нормаль к характеристике всегда равна скорости звука.  [c.176]

Полученные в 2 результаты справедливы, однако, только в том случае, когда приведенная скорость на входе в трубу поддерживается постоянной, что требует создания вполне определенного перепада давлений в потоке для каждого режима и каждого значения приведенной длины трубы. В действительности чаще всего бывает наоборот заданной величиной является перепад давлении между входным и выходным сечениями трубы, а величины скорости, расхода и других параметров течения определяются действующим перепадом давлений и сопротивлением на рассматриваемом участке трубы. Для потока во входном сечении трубы наиболее характерной величиной, которая обычно известна или может быть легко определена, является полное давление Рх, для характеристики потока на выходе из трубы важно знать статическое давление во внешней среде или резервуаре, куда вытекает газ из трубы р . Если скорость потока в выходном сечении меньше скорости звука, то статическое давление потока, как известно, равно внешнему давлению, то есть Р2 = Ри. Если А,2 = 1, то в выходном сечении трубы р2 Ри- Наконец, при > 1 возможны также режимы, когда рг < Рв-  [c.260]

Величина равнодействуюш ей зависит от числа М1 и степени разрежения е. Очевидно, что при фиксированных значениях первых двух величин равнодействующая возрастает с уменьшением е. При некотором значении е осевая скорость далеко за решеткой достигает скорости звука, и характеристика становится параллельной фронту решетки. В атом случае имеющиеся возмущения (за решеткой) не распространяются вверх по потоку. При повышении давления за решеткой (е > 1) в выходной части межлопаточного канала образуется система скачков, приводящая к повышению давления на нижней поверхности и возникновению силы, действующей в положительном направлении оси п. С возрастанием рг эта сила увеличивается, а угол отставания уменьшается. При некотором значении рг = рг шах и соответственно е = Вшах в межлопаточном канале образуется прямой скачок, и на выходе из решетки устанавливается дозвуковой поток с нулевым углом отставания.  [c.89]


В сверхзвуковом потоке, т, е. при w4> с, дифференциальное уравнение (9.75) решается методом характеристик. Чтобы дать понятие об этом методе, рассмотрим распространение слабых возмущений в сверхзвуковом потоке газа. Слабые возмущения, как мы знаем из 9.3, распространяются в газе со скоростью звука. Это означает, что если в данной точке потока газ подвергается слабому возмущению, то влияние этого возмущения распространяется только вниз по течению, так что возмущенная зона будет представлять собой вначале конус с вершиной в точке, где возникло возмущение. Для угла раствора этого конуса 2а справедливо соотношение sin а == IW, а на боковой поверхности конуса составляющая скорости газа, перпендикулярная к поверхности конуса (или, что то же самое, к линии слабых возмущений), равна местной скорости звука, т. е. Wn = с если бы это было не так, то линии слабых возмущений не занимали бы устойчивого положения. Поверхность, ограничивающую область потока, куда достигает исходящее из данной точки возмущение, называют характеристической поверх-ностью.  [c.329]

Акустические методы основаны на измерениях амплитудно-частотных характеристик шумов, сопровождающих течение неоднородных сред. Их применяют при исследовании газожидкостных потоков, имеющих пузырьковую структуру. Пузырьки газа или пара, размеры которых близки к резонансному для данной частоты звука, вызывают значительное затухание звуковой энергии. Для случая, когда амплитуда колебаний мала по сравнению с размерами пузырька, резонансная частота связана с радиусом пузырька соотношением  [c.242]

Прямое использование цикла Карно для измерения температуры обычно приводит к большим экспериментальным погрешностям. Поэтому разработаны практические методы воспроизведения термодинамической температуры, в которых связь между измеряемой величиной и температурой выводят на основе законов термодинамики или статистической физики. К числу таких соотношений относятся уравнение состояния газа, закон Кюри для парамагнетиков, зависимость скорости звука в газе от температуры, зависимость напряжения тепловых шумов на электрическом сопротивлении от температуры, закон Стефана — Больцмана. Температурные шкалы, установленные с использованием указанных соотношений, зависят от свойств термометрического тела, что приводит к появлению таких характеристик шкалы, как воспроизводимость и точность. Кроме того, некоторые шкалы основаны на приближенно выполняющихся закономерностях возникает понятие инструментальной температуры (магнитной, цветовой и т. п.), отличной от термодинамической.  [c.172]

Определите углы наклона характеристик в заданной точке потока, если составляющие скорости в этой точке V— = 320, Уу = 150 м/с, а скорость звука а = 280 м/с.  [c.139]

После соответствующей подстановки скоростей потока и звука получаем для характеристики первого семейства tg((i + + х) = 4,516, а для второго семейства — р) = —0,5157. В соответствии с этими результатами р + р, = 77,51° Р — — р = —27,28 и, следовательно, р = 25,12° р = 52,39°.  [c.148]

Завлсимость скорости распространения ультразвука в жидкостях от величины адиабатической сжимаемости определяет изменение скорости ультразвука в жидкой среде при изменении температуры и давления. Сжимаемость всех жидкостей, в том числе и смазочных масел, сильно увеличивается при повышении температуры и понижается при увеличении давления, что и вызывает соответственно либо уменьшение, либо увеличение скорости звука. Характеристики твердого тела, а именно — детали узла трения во время работы остаются практически неизменными, не меняется ни состав, ни размеры, поэтому скорость распространения звука в деталях, находящихся в контакте, остается постоянной. Параметры смазочного слоя во время работы непрерывно меняются, толщина слоя, давление в нем, температура взаимосвязаны, поэтому изменение одного из их влечет изменение других. Скорость распространения звука в этом случае не может оставаться постоянной. Поскольку  [c.292]

Рассмотрены вопросы электроакустики, а также смежных с нею фундаментальных разделов акустики применительно к системам вещания, радиотелефонной связи, звукоусиления, звукового сопровожде ния телевидения, записи и воспроизведения звука и т. д., а именно распространение звука, характеристики слуха, акустических сигналов электроакустической аппаратуры, помещений, радио- и телестудий систем звукоусиления и озвучения, а также вопросы передачи акустических сигналов, в том числе понятность и разборчивость речи, и методика акустических измерений.  [c.2]

Характеристики океанской среды и границы океана, оказывающие влияние на распространение звука, сложным образом зависят от многих параметров. Так, скорость звука является функцие температуры, глубины и солености. Температура в свою очередь определяется глубиной, временем, районом и погодными условиями. Поверхность может быть идеально гладким отражателем или чрезвычайно неровной, рассеивающей звук случайным образом. Существенное влияние на распространение оказывают состав грунта, наклон дна и его структура. Совокупность факторов, зависящих от скорости звука, характеристик дна и поверхности, в конечном итоге и определяет характеристики распространения звука.  [c.111]

Кирквуда — Бете) распространяются от пузырька вдоль характеристики первого семейства dridt = и + j, где j — скорость звука в чистой жидкости. Эти гипотезы, по-видимому, выполняются при рсх, onst (см. обсуждение (4.2.41) и (4.2.42)). Гипотеза Триллинга — Херринга приводит к уравнению  [c.269]

Определение 6. Пусть в задаче сверхзвукового обтекания одного жесткого контура рассматривается ударная волна. Касательная к ударной волне образует положительный угол а с направлением вектора скорости набегающего потока, но этот угол меньше того, при котором скорость за ударной волной равна скорости звука. Пусть, далее, из произвольной точки М контура проведена характеристика первого семейства до пересечения с ударной волной в точке N. Функция а = aт tgy, где у = ь х) определяет линию ударной волны, принадлежит классу Е, если кривизна линии у = ь х) в каждой точке N не меньше, чем ее значение, отвечающее кривизне контура в точке М равной -оо.  [c.63]


Волны - одно из наиболее фундаментальных и значимых понятий окружающего нас физического мира. Одна из основных характеристик волны - частота V. Волны бывают продольные, когда колебания происходит вдоль линии распространения волны, и поперечные, когда колебания происходят поперек этой ]гинии (рисунок 4.8). Продольные волны могут распространяться исключительно в срсде, тогда как поперечные - и в вакууме. Звук - продольные колебания упругой среды. Наше ухо способгю слышать колебания с частотой 50-12000 Гц. Свет - поперечные электромагнитные колебания. Наши органы зрения способны воспринимать электромагнитные колебания с частотой 10 -10 Г ц. Для сравнения, частота переменно1 о тока в электросети составляет 50 Гц.  [c.248]

Волны - одно из наиболее фундаментальных и значимых понятий окружающего нас физического мира. Одна из основных характеристик волны -частота V. Волны бывают продольные, когда колебания происходят вдоль линии распространения волны, и поперечные, когда колебания происходят поперек этой линии (рис. 82). Продольные волны могут распространяться исключительно в среде, тогда как поперечные - и в вакууме. Звук - продольные колебанияупругой среды.  [c.137]

Говоря о возмущении состояния газа, мы подразумеваем слабое изменение каких-либо характеризующих это состояние величии скорости, плотности, давления и т. и. По этому поводу необходимо сделать следующую оговорку со скоростью звука не распространяются возмущения значений энтропии газа (при постоянном давлении) и ротора его скорости. Эти возмущения, раз возникнув, не перемещаются вовсе относительно газа, а относительно неподвижной системы координат переносятся вместе с газом со скоростью, разной скорости каждого данного его элемента. Для энт[)опни это является непосредственным следствием закона ее сохранения (в идеальной жидкости), который как раз и означает, что энтропия каждого элемента газа остается постоянной при его перемещении. Для ротора скорости (завихренности) то же самое следует из закона сохранения циркуляции. Для этих возмущений характеристиками являются сами линии тока.  [c.444]

Для одномерного нестационарного двимсения можно ввести характеристики как линии в плоскости х, t, угловой коэффициент которых dx/dt равен скорости распространения малых возмущений относительно неподвижной системы координат. Возмущения, распространяющиеся относительно газа со скоростью звука в полол ительном или отрицательном направлении оси х, перемещаются относительно неподвижной системы со скоростью v -f- с или V — с. Соответственно дифференциальные уравнения двух семейств характеристик, которые мы будем условно называть характеристиками С+ и С , гласят  [c.542]

Замечая, что величину dpjdp можно принять за характеристику сжимаемости среды — роста плотности с давлением,—заключим, что чем больше сопротивляемость среды сжатию, тем больше скорость распространения звука в ней. Приведем округленные значения скорости распространения звука в разных средах в воздухе — 340 м/с, в воде—1500 м/с, в твердом теле — 5000 м/с (вопрос о распространении малых возмущений в твердых телах представляет особые трудности, так как требует рассмотрения уравнений динамики упругого тела с характерными для него двумя скоростями распространения возмущений). Очень малые скорости распространения звука наблюдаются в легко сжимаемых жидких пенах.  [c.153]

Наиболее далеко идущим прогнозом, следующим из модели Тисса, явилось предсказание существования тепловых волн в жидкости—явления, ставшего впоследствии известным под названием второго звука . Формальное рассмотрение двух взаимопроникающих жидкостей, обладающих разной энтропией, приводит к волновому уравнению для неоднородностей температуры вместо диссипативного уравнения теплопроводности. Тисса предположил поэтому, что нарушения равновесной концентрации двух жидкостей будут выравниваться посредством волнового движения, а но посредством диффузии. Это волновое движение, как и следовало ожидать, будет несколько похоже на акустический звук с той существенной разницей,, что при этом не будет происходить заметных колебаний плотности жидкости. Вместо них будут наблюдаться колебания относительной плотности двух жидкостей, т. е. колебание температуры. С этой точки зрения подходящим параметром для характеристики диссипации тепловых импульсов в Не II является не теплопроводность вещества, а скорость распространения в нем тепловых волн. На основании своей модели Тисса предположил, что эта скорость будет возрастать от нуля в Х-точке до максимума примерно при 1,5" К и затем уменьшаться при дальнейшем нонижении температуры.  [c.803]

Звуковое дав.аенис является наиболее важной характеристикой звука. Это связано с тем, что из всех величин, характеризующих звук, человеческое ухо воспринимаег именно . вуковое давление.  [c.159]

Эффективное звуковое давление и интенсивноеть звука являются объективными характеристиками звука. В отличие от них громкость звука— субъективная оценка силы слухового ощущения звука. Громкость воспринимаемого ухом звука зависит не только от эффективного звукового давления, частоты и длительности звука, но и от чувствительности уха.  [c.231]

Время реверберации представляет собой важную характеристику акустических качеств помещения (концертного зала, аудитории и т. п.). При слишком большом времени реверберации (несколько секунд) помешение очень гулко и речь человека звучит в нем неразборчиво. При этом каждый новый слог речи (длительность слогов 0,1—0,3 с) воспринимается слушателями на фоне целого ряда предшествующих слогов, еще не успевщих отзвучать. Музыка в таком помещении также звучит невнятно, хотя и громко. При слишком малом времени реверберации, наоборот, звук затухает слишком быстро. Речь и музыка в этом случае звучат слабо и глухо.  [c.237]

Если осевая составляющая скорости потока, набегающего на решетку пластин при нулевом угле атаки, больше или равна скорости звука, то при уменьшении давления за решеткой, по сравнению с его значением перед ней, силового воздействия потока на пластину не будет. Это связано с тем, что при Ми = = Ml sinu 1,0 характеристика на выходе или совпадает с фронтом (при Мгд = 1,0) или выходит за пределы решетки (при Ми > 1,0) и, следовательно, любое уменьшение давления вверх по пластине не передается.  [c.84]

Важной характеристикой, определяющей зависимость изменения плотности газа при изменении давления в цвижущемся потоке, является скорость распространения звука с. В однорсдной среде скорость распространения звуковых колебаний определяется из ныражения  [c.18]

Скорость звука. Кроме термических коэффициентов важной характеристикой веи1ества является скорость звука. Под скоростью звука поним,ают скорость распространения в теле малых возмущений, в частности, упругих волн малой амплитуды (слабые упругие волны называются з в у к о -в ы м и).  [c.77]

V в м/с, для Г в дБ/мкс Г = 8,686-10 at). Помимо а и Г характеристиками затухания являются безразмерные добротность Q = nflav и логарифмический декремент затухания б = я/(Э. В отличие от затухания, включающего рассеяние звука на неоднородностях и другие виды недиссипативных потерь, поглощение включает лишь диссипативные потери. Для газов и жидкостей коэффициент поглощения а, м .  [c.134]

В случае дозвуковой кромки, располагающейся внутри конуса Маха-с углом при вершине р.< = ar sin (1/М< ) (рис. 1.8.7,б), нормальная к этой кромке составляющая скорости меньше скорости звука (Voon СПоо, <1) и, таким образом, оперение находится в условиях дозвукового обтекания. В этих условиях оказывается невыгодным применение оперения с заостренной кромкой. Можно улучшить условия обтекания и добиться более благоприятных аэродинамических характеристик, слегка закруглив переднюю-кромку.  [c.66]



Смотреть страницы где упоминается термин Звук характеристики : [c.166]    [c.32]    [c.49]    [c.161]    [c.74]    [c.299]    [c.108]    [c.51]   
Руководство по звукотехнике (1980) -- [ c.14 ]



ПОИСК



АКУСТИЧЕСКИЕ ЭФФЕКТЫ, ОБУСЛОВЛЕННЫЕ НЕСТАЦИОНАРНЫМИ ПРОЦЕСАМИ Характеристики некогерентного турбулентного поля как источника звука

Звук Физические характеристики

Концентрационная характеристика скорости звука

Основные характеристики звука

Прохождение звука сквозь преграды. Звукозащнтные конструкции Основные определения. Характеристики некоторых шумоз

Рассеяние звука цилиндром. Предел для коротких волн. Рассеянная мощность. Сила, действующая на цилиндр. Рассеяние звука сферой Сила, действующая па сферу. Расчёт конденсаторного микрофона Характеристика микрофона Поглощение звука поверхностями

Скорость звука характеристики

Скорость звука. Нелинейные механические характеристики жидкостей. Поглощение звука в жидкостях Распространение звука в твердых телах

Субъективные характеристики звука

Упрощённый анализ для случая высоких частот. Интенсивность и среднее квадратичное давление. Решение в форме разложения в ряд по фундаментальным функциям. Установившийся режим в помещении. Прямоугольное помещение. Частотная характеристика интенсивности звука. Предельный случай высоких частот. Приближённая формула для интенсивности. Точное решение. Коэффициент поглощения поверхности. Переходные процессы, возбуждение импульсом. Точное решение задачи о реверберации звука Задачи

Условия достижения в коммуникационных каналах скорости передачи сигналов, равной скорости распространения звука в рабочей среде. Влияние отражения волн на конце канала на характеристики изменения выходного давления и расхода

Характеристики воздушной среды. Параметры звука и сверхзвуковой хлопок

Характеристики направленности излучателя звука в форме окружности и круглой поршневой диафрагмы



© 2025 Mash-xxl.info Реклама на сайте