Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихрь поверхность

Рис.6.39. Схема вихре поверхности объекта и улавливает токового контроля изменения, вносимые вихревыми Рис.6.39. Схема вихре поверхности объекта и улавливает токового контроля изменения, вносимые вихревыми

Индуктивная скорость может быть представлена в виде Wz = = 2, л + >где Шг, л — скорость, индуцируемая вихрями поверхности лопасти, а А- — вихрями пелены (обе направлены вниз).  [c.481]

Разрушение ядром вихря поверхности лопасти у ее конца, где он возникает, маловероятно, хотя возможно, что принудительное схлопывание на любой поверхности, расположенной ниже по потоку от лопасти, может вызвать разрушение [18]. Поэтому разрушение на конце лопасти гребного винта обусловлено схлопыванием перемещающихся каверн, которые непрерывно образуются на верхнем по потоку конце поверхности вихревой трубки, которая кипит , т. е. покрыта перемещающимися кавернами. Если эти перемещающиеся каверны не столкнутся с поверхностью лопасти, она не будет разрушаться. Поэтому необходимо удерживать поверхность раздела ядра на удалении от напорной стороны поверхности лопасти и ограничить соприкосновение вихря с поверхностью лопасти.  [c.623]

Казалось естественным решать задачу в предположении, что область покоя // заполнена жидкостью той же плотности, что и жидкость в области потока /. Такая схема вызывала возражения, главное из которых заключалось в том, что поверхность разрыва, представляющая собой тонкий вихревой слой, неустойчива. Распадаясь на отдельные вихри, поверхность разрыва быстро заполняет зону II вихревыми движениями. Многочисленные наблюдения подтверждали  [c.322]

Когда поток жидкости встречает на своем пути острое ребро, то вначале он обтекает его (рис. ХХ.24, а), при этом возникает продольный скачок скорости. Но так как скорость обтекания получается очень большой, теоретически бесконечной, очень скоро здесь возникает вихрь (рис.. ХХ.24, б), который резко снижает эту скорость. В итоге жидкость как бы избегает бесконечно больших скоростей и для борьбы с ними создает поверхности раздела, связанные с вихреобразованием. Последнее же связано с круговым движением жидкости, вызывающим притекание ее к острому ребру с обратной стороны по отношению к общему направлению движения, что помогает возникновению поверхностей раздела, на которых вследствие трения расходуется большое количество энергии. Под действием вихря поверхность раздела закручивается и усиливает вихрь, практически они составляют одно целое и растут от ничтожно малого начального возмущения до больших размеров (рис. ХХ.25).  [c.424]

Очень часто закрученные течения, особенно в каналах представляют собой свободно-вынужденный вихрь. Граница между ними для осесимметричных каналов представляет собой также осесимметричную условную поверхность раздела вихрей. В зарубежной научно-технической литературе такой составной закрученный поток принято называть вихрем Рэнкина. Разделительная фаница для вихря Рэнкина определяется радиусом разделения вихрей Tj. Для Tj <г< г, движение газа подчиняется закону потенциального вихря, а для области О < г < — закону движения вынужденного вихря. В 1 л. 1.2 приведены общие характеристики вихрей [44].  [c.24]


С низкочастотной неустойчивостью связывают прецессионное движение приосевого вихря [109]. Действительно, при симметричном расположении вихревого ядра (рис. 3.20,а) момент сил трения распределен равномерно по всей его поверхности.  [c.124]

Зависимости вихря скорости С (0, 0) и распределения давления на поверхности пузырька к (6) при различных значениях Ве приведены соответственно на рис. 9, 10. Отметим, что профиль  [c.37]

Изотропность турбулентного течения означает, что пульса-ционные компоненты скорости течения не зависят от направления. Хотя в трубах это условие выполняется лишь вдали от поверхностей стенок, соотношение (4. 3. 8) может быть использовано для турбулентных вихрей в жидкости, размер которых, с одной стороны, много меньше диаметра трубы, а с другой — больше характерного линейного масштаба диссипации энергии Г [47]  [c.140]

Противоречащий наблюдениям результат об отсутствии воздействия потока на движущееся s нем тело объясняется тем, что благодаря силам вязкости (которые в рассматриваемых схемах течения отсутствовали) будет срыв потока с поверхности н образование за телом вихрей (рис. 16.14), а ие плавное обтекание, как это изображено на рис. 16.13. Присоединенный вихрь, определяемый постулатом Жуковского — Чаплыгина, представляет своеобразный учет вязкости при изучении движения крылового профиля в идеальной жидкости.  [c.273]

Для вектора вихря скорости ноток через замкнутую поверхность равен нулю, так как с учетом формул для проекций вектора вихря на координатные оси имеем  [c.220]

Другой важной в механике теоремой, дающей преобразование линейного интеграла в поверхностный, является теорема Стокса циркуляция вектора по замкнутому контуру I равна потоку вихря вектора через поверхность S, ограниченную данным контуром  [c.16]

Вторая основная задача связана с исследованием динамической устойчивости стержней в потоке и определением критических скоростей потока. Комплексные собственные значения позволяют выяснить возможное поведение стержня при возникающих свободных колебаниях во всем диапазоне скоростей потока (от нуля до критического значения) и тем самым ответить на вопрос, какая потеря устойчивости (с ростом скорости потока) наступит, статическая (дивергенция) или динамическая (флаттер). Задачи динамической неустойчивости типа флаттера подразумевают потенциальное (без срывов) обтекание стержня (рис. 8.1,а), что имеет место только в определенном диапазоне чисел Рейнольдса. Возможны и режимы обтекания с отрывом потока и образованием за стержнем вихревой дорожки Кармана (рис. 8.1,6). Вихри срываются попеременно с поверхности стержня, резко изменяя распределение давления, действующего на стержень, что приводит к появлению периодической силы (силы Кармана), перпендикулярной направлению вектора скорости потока.  [c.234]

Картина образования вихрей во многих случаях носит совершенно регулярный характер. Вихри возникают по очереди в каждом из двух потоков, отрывающихся с двух сторон от поверхности обтекаемого тела, и движутся все с одинаковой скоростью. (Эта скорость меньше, чем скорость потока, так как в вихрях собираются как  [c.552]

Таким образом, величина вихря во всех точках, кроме начала координат, равна нулю. В начале координат (г = 0) скорость равна бесконечности, т. е. начало координат математически является особой точкой. Физически такое движение возможно лишь вне некоторого ядра конечного радиуса го. Ядро может состоять из твердого тела или из жидкости той же или другой плотности. Вне ядра течение является безвихревым. На поверхности ядра скорость имеет некоторую конечную величину шо = с/го.  [c.106]

На поверхности тангенциального разрыва в связи с ее неустойчивостью возникают вихри, беспорядочно движущиеся вдоль и поперек потока вследствие этого между соседними струями происходит обмен конечными массами (молями) вещества, т. е. поперечный перенос количества движения, тепла и примесей. В результате на границе двух струй формируется область конечной толщины с непрерывным распределением скорости, температуры и концентрации примеси эта область называется струйным турбулентным пограничным слоем. При очень малых значениях числа Рейнольдса струйный пограничный слой может быть ламинарным, но на этом сравнительно редком случае течения мы не останавливаемся.  [c.361]


При истечении в неподвижную однородную жидкость (рис. 12.1) струя постепенно расщиряется. Считается, что в начальном сечении струи плоская эпюра скоростей прямоугольная. На границе струи с окружающей неподвижной жидкостью образуются вихри, поверхность струи по грани-, цам взрыхленная . Осредненные очертания границ струи прямолинейные. На границе и вблизи нее формируется струйный пограничный турбулентный слой.  [c.239]

Эффективным способом увеличения коэффициента теплоотдачи является лскусствениая турбулизация вязкого подслоя на поверхности твэла. В случае шаровых твэлов эта турбулизация происходит за счет возникающих при течении газа вихрей. Характерная особенность газового потока при движении его через шаровые твэлы — раннее наступление турбулентного режима течения. Из-за интенсивного вихреобразования лами-ларный режим течения нарушается при достижении чисел JRe=10-f-15. Предложены две схемы процесса течения охладителя в шаровых элементах.  [c.39]

Из теории турбулентности известно [25], что перенос взвешенных в потоке частиц осуществляется главным образом крупномасштабными вихревыми образованиями, присущими турбулентному потоку. Величина образований обусловлена порядком размера потока и поэтому перенос частиц осуществляется по всей глубине потока. Крупные вихри (крупномасштабная турбулентность) захватывают и переносят взвешенные частицы различных размеров. При отсутствии центробежных сил (на поворотах, ответвлениях п т. п.), а также специфических особенностей пылегазовой смеси (уплотнение пыли в местах поворота, залнпание ее на поверхностях, комкование и 1. д.), поля концентрации (запыленности) должны меняться незначительно в сравнительно широком диапазоне изменения скоростей и размеров частиц и при сравнительно небольших концентрациях (щ < < 0,3 кг/кг) и мало влияют на характер полей скоростей всего потока. Это подтверждается опытами ряда исследователей [45]. (Вопросы осаждения аэрозольных частиц на стенках сравнительно длинных труб и каналов в соответствии с миграционной теорией осаждения [97 ] здесь не рассматривается.) В проведенных опытах [45] изучалось распределение концентрации (х, кг/кг) и плотности пылевого потока [ , кг/(м -с) ] в рабочей камере модели аппарата при различных условиях подвода и раздачи потока по сечению. Для запыливаиия потока воздуха применялась зола тощего угля с фракционным составом, приведенным ниже, и плотностью р = = 2,16 г/см .  [c.312]

К третьей группе относятся специфические закручивающие устройства, например, врашаюшиеся трубы. Однако низкие значения динамической вязкости газа существенно снижают эффективность способа. Для повышения интенсивности закрутки потока на внутренней поверхности вращающихся каналов устанавливают перфорированные пластины, пучки труб или пористые диски [196]. На выходе из таких закручивающих устройств создаются профили скорости, которые соответствуют закрутке газа как целого. В вязкой жидкости вращающиеся течения (вихри) практически всегда содержат центральное ядро, вращающееся как квазитвердое тело с практически постоянной по всему ядру угловой скоростью со.  [c.16]

Практически все рассмотренные выще закручивающие устройства создают течения с центральным квазитвердым ядром. Окружная скорость в таких потоках равна нулкз на оси симметрии. Максимум окружной скорости для полностью вынужденного вихря расположен на его внещней фанице, для ограниченных течений практически вблизи внутренней поверхности канала. Для свободного (потенциального) вихря он расположен на более низкой по ращ1усу позиции, ближе к оси, но никогда не может совпадать с осью, ибо в этом случае окружная скорость должна была бы быть равной нулю. Более того, существует еще более жесткое термодинамическое офаничение по максимально допустимой окружной скорости, которая определяется полной температурой газа на входе в закручивающее устройство Г, и показателем изоэнтропы газа к  [c.23]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]

В.П. Алексеев и А.П. Меркулов пришли к выводу о перестройке вдоль камеры энергоразделения периферийного квазипотенци-ального вихря в вынужденный приосевой закрученный поток, вращающийся по закону, близкому к закону вращения твердого тела (т = onst) [13, 14, 115, 116]. Отмеченные исследования были проведены в 60-е годы и их основополагающие результаты, а также результаты зарубежных исследователей [227, 234, 237, 246, 255, 261, 265, 268] обобщены в монографиях [35, 94, 164]. В большинстве проведенных исследований измере аничивались лишь установлением качественных зависимостей распределения параметров по объему камеры энергетического разделения в виде функций от режимных и геометрических параметров. Сложность проведения зондирования в трехмерном интенсивно закрученном потоке определяется не только малыми размерами камеры энергоразделения, но и радиальным градиентом давления, вызывающим перетекание газа по поверхности датчика, а следовательно, искажающим данные измерений. В некоторых исследованиях [208] предпринята попытка определения расчетным методом поправки на радиальные перетечки с последующим учетом при построении кривых (эпюр) распределения параметров в характерных сечениях. Опубликованные данные порой имеют противоречивый характер и трудно сопоставимы, так как практически всегда имеются отличительные признаки в геометрии основных элементов и соотношении характерных определяющих процесс параметров.  [c.100]


Анализ результатов траверсирования различными зондами объема камеры энергоразделения позволяет выделить следующие характерные особенности распределения параметров в вихревой трубе с дополнительным потоком. Как и в обычных разделительных вихревых трубах, работающих при ц 1, четко различаются два вихря — периферийный и приосевой, перемещающиеся в противоположных направлениях вдоль оси. Первый — от соплового сечения к дросселю, второй — в обратном направлении. Распределение параметров осредненного потока существенно неравномерно как по сечению, згак и по длине камеры энергоразделения. Радиальные градиенты статического давления и полной температуры уменьшаются от соплового сечения к дросселю, а их максимальные значения наблюдаются в сопловом сечении. Распределение тангенциальных и осевых компонент скорости качественно подобны для различных сечений, однако, количественно вдоль трубы они претерпевают изменения. Поверхность разделения вихрей в большей части вихревой зоны близка к цилиндрической, о чем свидетельствуют пересечения осевых скоростей для различных сечений примерно в одной точке оси абцисс Т= 0,8 (см. рис. 3.9 и 3.10). Это хорошо согласуется с результатами исследований вихревых труб с диффузорной камерой энер-горазцеления, работающих при ц < 0,8, и позволяет в составлении аналитических методик расчета вихревых труб с дополнительным потоком вводить допущение dr /dz = О, а радиус разделения вихрей Tj для этого класса труб считать равным примерно 0,8. Как и у обычных труб, интенсивность закрутки периферийного потока вдоль трубы снижается -> 0), а возвратное при-осевое течение формируется в основном из вводимых дополнительно масс газа, скорость которых на выходе из трубки подвода дополнительного потока имеет осевое направление. По мере продвижения к отверстию диафрагмы приосевые массы в процессе турбулентного энергомассообмена с периферийным вихрем приобретают окружную составляющую скорости. Затухание закрутки периферийных слоев происходит тем интенсивнее, чем больше относительная доля охлажденного потока. Опыты показывают, что прй оптимальном по энергетической эффективности  [c.112]

Явление реверса автоматически объясняется появлением зоны рециркуляции и соответствующей поверхности раздела приосе-вого вихря и рециркуляционного потока. В этом случае вихревой перенос энергии осуществляется из зоны рециркуляции в область потока, выносимого через отверстие диафрагмы, который таким образом нагревается.  [c.133]

Основываясь на результатах работы [223], можно предположить, что использование устройств, раскручивающих охлажденный и подогретый составляющие потоки, покидающие вихревые трубы, может повысить эффееты энергоразделения вследствие увеличения степени расширения в вихре. Это предположение получило экспериментальное подтверждение в работах А.П. Меркулова и его учеников, а также в работах В. И. Метенина и других исследователей из различных научных центров как в нащей стране, так и за рубежом [40, 112, 116, 137, 222, 226, 243, 245, 260, 262, 263, 270]. Экспериментально и теоретически подтверждено влияние на качество процесса теплофизических характеристик рабочего тела, в том числе и показателя адиабаты [35—40, 112, 116, 152, 153]. Частично получил опытное подтверждение вывод о пропорциональности абсолютных эффектов охлаждения от температуры газа на входе в сопло-завихритель [112,137]. Однако существенные расхождения теоретических предпосылок с результатами экспериментальных исследований не позволяют сделать вывод о достоверности рассматриваемой физико-математической модели процесса энергоразделения. Прежде всего расхождение заключается в характере распределения термодинамической температуры по поперечным сечениям камеры энергоразделения вихревых труб. В гипотезе рассмотрен плоский вихрь, поэтому объективности ради следует сравнить эпюры температуры для соплового сечения. Согласно [223], распределение полной температуры линейно по сечению, причем значение максимально на поверхности трубы. Эксперименты свидетельствуют о существенном удалении максимума полной температуры от поверхности, причем это отклонение не может быть объяснено лищь неадиабатностью камеры энергоразделения [17, 40, 112, 116, 207, 220, 222, 226, 227-231, 245, 251, 260, 262, 263, 267, 270]. Опыты показывают, что эффективность энергоразделения существенно зависит от геометрии трубы и длины ка-  [c.154]

Одной из основных геометрических характеристик вихревой трубы является радиус разделения вихрей г . Физико-математическая модель, построенная на гипотезе взаимодействия вихрей, позволяет рассчитывать величину на режимах, когда истечение из отверстия сопла-завихрителя соответствует критическому. Для докритических режимов истечения обычно принимают rj = г, [116]. Это весьма жесткое допушение, так как оно исключает возможность формирования свободного квазипотенциального закрученного потока в узкой кольцевой зоне, прилегающей к внутренней цилиндрической поверхности камеры энергоразделе-ния. Практически это означает полное отсутствие возможности взаимодействия вихрей, так как будет существовать лишь один приосевой вынужденный вихрь, вращающийся как квазитвердое тело. Устранить это внутреннее противоречие можно, если в математическую модель ввести оценку значения rj, основанную на законах сохранения массы, энергии и момента количества движения с учетом особенностей турбулентного характера течения. Рассмотрим модель вихревой трубы с тангенциальным вдувом газа через щель сопла на внутренней поверхности трубы радиусом  [c.188]

Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]


Как известно, вблизи передней поверхности пузырька образуется тонкий диффузионный пограничный слой, в котором происходит скачок значения концентрации целевого компонента от Со до Со. Эта область обозначена цифрой III. В разд. 2.7 было также указано, что циркуляционное течение за газовым пузырьком имеет структуру вихря Хилла (внутренняя область циркуляционного течения обозначена цифрой IV). Следовательно, вблизи задней поверхности пузырька происходит интенсивное перемешивание жидкости и основное сопротивление массопереносу от задней поверхности пузырька сосредоточено в тонком пограничном слое вблизи этой поверхности (зона V).  [c.258]

Сформулируем систему уравнений и граничных условий, описывающих массоперенос в диффузионных пограничных слоях. Поскольку объем пространства, занимаемый пузырьком газа, много меньше объема циркуляционной зоны, течение жидкости вблизи задней поверхности пузырька можно описывать при помощи вихря Хилла [92]. Соответствующая функция тока имеет вид  [c.261]

Вставляемые керамические стержни широко используют при производстве точных отливок, например, турбинных охлаждаемых лопаток для авиационных двигателей. На рис. 114 представлена лопатка, отлитая с применением вставных керамических стержней, производимых на ОАО УМПО . Лопатка с циклонно-вихре-вой системой охлаждения имеет сложную внутреннюю поверхность с многочисленными пересекающимися ребрами (в количестве 18), с перемычками шириной 0,38 - 0,5 мм, с отверстиями 0,8 - 0,9 мм, пера лопатки длиной 100 мм. Элементы оболочковой 4юрмы со стержнями представлены на рис. 87.  [c.235]

Полученным результатам мо) <но дать следующее физическое истолкование. При малых числах Рейнольдса жидкость обтекает выступы шероховатости без образования и отрыва вихрей благодаря значительному влиянию вязкости жидкости свойства поверхности стенок труб не оказывают при этом влияния на сопротивление и кривые X=f (F e) совпадают с прямой II (для гладких труб). Когда же с увеличением скорости (т. е. числа Рейнольдса) от бугорков шеро) оватости начинают отрываться вихри, то свойства поверхности уже оказывают влияние на сопротивление и кривые =/(Re) отклоняются от линии гладкого трения.  [c.174]

Характер воздействия массовых сил на поток зависит от взаимного направления угловых скоростей цилиндрических поверхностей и от величины этих скоростей. При неподвижном внешнем цилиндре окружная скорость жидкости в зазоре увеличивается от нуля на поверхности внешнего цилиндра до скорости вращения поверхности внутреннего цилиндра (рис. 8.9, а). В этом случае массовая сила и производная dFldn имеют противоположные направления и, следовательно, поле массовых сил оказывает активное воздействие на поток. В такой системе под влиянием массовых сил возникают вихри Тейлора, имеющие форму торов (рис. 8.10, а). Соседние вихри вращаются в противоположных направлениях.  [c.354]


Смотреть страницы где упоминается термин Вихрь поверхность : [c.171]    [c.79]    [c.108]    [c.175]    [c.312]    [c.70]    [c.213]    [c.22]    [c.22]    [c.552]    [c.32]    [c.149]    [c.24]    [c.104]    [c.173]    [c.231]    [c.355]   
Теоретическая механика Изд2 (1952) -- [ c.711 ]



ПОИСК



Взаимодействие несущей поверхности с вихрем

Вихрь

Линии тока, трубка тока, потоки массы и вихря через поверхность

Нагрузка, вызванная вихрем ометаемую поверхность

Начальный вихрь несущей поверхности

Непрерывность давления в жидкости при прохождении поверхности, ограничивающей вихри

Отрыв вихрей Отскакивание» поверхности разрыва

Поверхности раздела. Возникновение вихрей и циркуляции

Поверхность, свободных вихрей

Распределение присоединенных вихрей по поверхности крыла и теория потенциального движения жидкости вокруг крыла

Слияние двух потоков. Поверхности раздела. Возникновение вихрей

Способы для предупреждения образования свободных поверхностей раздела и возникающих из них вихрей

Способы для предупреждения образованна свободных поверхностей раздела я возникающих из нвх вихрей



© 2025 Mash-xxl.info Реклама на сайте