Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы дросселирования

Дросселирование является типичным неравновесным процессом, в результате которого энтропия рабочего тела возрастает без подвода теплоты. Как и всякий неравновесный процесс, дросселирование приводит к потере располагаемой работы. В этом легко убедиться на примере парового двигателя. Для получения с его помощью технической работы мы располагаем паром с параметрами pi и ti. Давление за двигателем равно рг (если пар выбрасывается в атмосферу, то р2 = 0,1 МПа).  [c.51]


За счет неравновесности процесса дросселирования.  [c.211]

Уравнение процесса дросселирования  [c.219]

Этот случай называется инверсией газа, а температура газа, при которой он происходит, называется температурой инверсии Ти,ш. Следовательно, процесс дросселирования реального газа при температуре инверсии внешне не отличается от дросселирования идеального газа.  [c.221]

Инверсионная кривая делит рГ-диаграмму на две области. Все процессы дросселирования, начинающиеся внутри инверсионной кривой, сопровождаются охлаждением вещества вне инверсионной кривой все процессы дросселирования протекают с нагреванием вещества. Процессы, начинающиеся на инверсионной кривой, со-. ответствуют случаю инверсии, когда Ti = Т = Т ит-  [c.225]

Исследование процесса дросселирования (мятия) водяного пара очень наглядно производится по is-диаграмме водяного пара (рис. 14-3), в которой процесс мятия можно условно изобразить го-  [c.225]

Процесс дросселирования является необратимым процессом, который сопровождается увеличением энтропии. Из предыдуш,их глав известно, что с ростом энтропии всегда понижается работоспособность газа или пара, что наглядно видно из диаграммы (рис. 14-3). Пусть водяной пар дросселируется от состояния а до с. От точки а до давления разность энтальпий выражается отрезком аЬ] от точки с разность энтальпий выражается отрезком d, который значительно меньше отрезка аЬ, т. е. работоспособность пара резко падает. Чем больше мятие пара, тем меньше его работоспособность.  [c.226]

Найти приращение энтропии в процессе дросселирования.  [c.227]

Так как процесс дросселирования (линия 3—4). характеризуется равенством начального и конечного значений энтальпии, то  [c.274]

Процесс конденсации изобразится линией 2—3, а процесс переохлаждения — линией 3—3. Процесс дросселирования условно изобразится линией 3 —4.  [c.277]

Таким образом, можно заключить, что нри расширении в области, где рабочее вещество близко к критической точке (или когда производится расширение жидкости), или при расширении между сравнительно высокими давлениями процесс дросселирования высокоэффективен и вследствие простоты он столь же удобен, как и процесс адиабатического расширения в детандере. Однако в тех случаях, когда падение давления при расширении велико или происходит от сравнительно высоких температур, адиабатическое расширение предпочтительнее, несмотря на технические сложности его осуш ествления.  [c.79]

Для идеального газа внутренняя энергия не зависит от объема, а в процессе дросселирования газ не совершает работы и не участвует в теплообмене с внешней средой, т. е. внутренняя энергия должна оставаться постоянной.  [c.139]


В реальном газе внутренняя энергия зависит от объема, поэтому в процессе дросселирования внутренняя энергия и температура меняются  [c.139]

Процесс дросселирования идеального газа полностью необратим, так как невозможно создать первоначальное давление без затраты работы.  [c.139]

Процесс дросселирования реального газа частично обратим, так как изменение температуры по сравнению с окружающей средой можно использовать для получения работы, которую можно направить на возвращение газа в исходное состояние.  [c.140]

Из точки 1 жидкость при температуре и соответствующем давлении насыщения направляется к дроссельному вентилю 3, где происходит процесс дросселирования (процесс 1-2). Из дроссельного вентиля выходит влажный пар. Поступая затем в испаритель 4, влажный пар воспринимает теплоту и содержащаяся в нем жидкость испаряется (процесс 2-5). Из испарителя пар направ--ляется снова в компрессор. Холодильный коэффициент этой установки равен  [c.182]

Ясно, что количество теплоты трения Q .ip, когда она выделяется в самом теле и не рассеивается во вне, вполне эквивалентно такому же количеству теплоты, полученной телом от внешнего источника теплоты, и поэтому в такой же мере вызывает увеличение энтропии тела. Этим результатом мы воспользуемся далее при рассмотрении процессов дросселирования и течения газов с трением.  [c.63]

При анализе процесса дросселирования допустимо считать, что внутри дроссельной пробки устанавливается, как и вообще при течении газа (жидкости), локальное термодинамическое равновесие, т. е. протекающий через пробку газ (жидкость) находится в равновесном состоянии при этом процесс изменения состояния газа (жидкости) в дроссельной пробке, вследствие конечной скорости протекания действия сил трения, является необратимым.  [c.167]

В случае постоянного сечения трубопровода при дросселировании газов наблюдается некоторое увеличение скорости потока за диафрагмой ( 2 > щ), что связано с понижением давления (Рг < Pi)< которое приводит к увеличению удельного объема газа ( 2 > i). В случае дросселирования насыщенных жидкостей увеличение скорости w. обусловлено парообразованием, которое сопутствует этому процессу. Однако в связи с тем, что в процессе дросселирования из.менение скорости рабочего тела до и после диафрагмы незначительно (w., — lwj 0), практически во всех случаях изменением его кинетической энергии можно пренебречь вследствие ее. малости по сравнению с энтальпией потока. Тогда из выражения (13.27) следует, что  [c.20]

Полученное равенство (14-1) показывает, что энтальпия в результате процесса дросселирования не изменяется. Этот вывод к промежуточным состояниям газа неприменим. В сечениях у отверстия энтальпия не остается постоянной величиной, т. е. процесс дросселирования нельзя отождествлять с изоэнтальпическим процессом. Равенство (14-1) справедливо только для сечений, достаточно удаленных от сужения.  [c.219]

Для идеального газа эффект Джоуля — Томсона равен нулю, так как температура газа в результате процесса дросселирования не изменяется. Следовательно, изменение температуры реального газа при дросселировании определяется отклонением свойств реальных газов от идеального, что обусловлено действием межмоле-кулярных сил.  [c.220]

Процесс дросселирования 1 кз рабочего тела сопровождается затратой или совершением внешней работы (работы проталкивания) P2V2 —piVi. При этом произведение характеризует работу,  [c.220]

Поскольку для адиабатного процесса дросселирования справедливо равенство ij = I2, т. е. Ui -f piVi = U2 + или Uj — = р2 2 — PiVi, ТО отсюда следует, что внешняя работа (работа проталкивания) в этом процессе совершается за счет убыли внутренней энергии тела.  [c.220]

В большинстве практических случаев внешняя работа имеет отрицательное значение, т. е. p2Viвнешней работы, идущей на увеличение внутренней энергии газа (m2> i). Если при этом внешняя работа P2V2 — P Hi по абсолютной величине будет больше прироста потенциальной составляющей внутренней энергии, то избыток работы пойдет на увеличение ее кинетической составляющей и газ будет нагреваться T >Ti).  [c.221]


В частном случае абсолютное значение — P Vi в процессе дросселирования может оказаться равным росту потенциальной составляющей внутренней энергии и при этом кинетическая со-ставляюш,ая останется без изменения, а следовательно, не изменится и температура газа Т = Гг).  [c.221]

Если при p2V2абсолютное значение внешней работы будет меньше возрастания потенциальной составляющей внутренней энергии в процессе дросселирования, то кинетическая составляющая несколько уменьшится, т. е. газ будет охлаждаться. Следовательно, при отрицательной внешней работе могут быть случаи дросселирования, когда температура реального газа увеличивается, остается без изменения и уменьшается.  [c.221]

Процесс дросселирования тела всегда связан с потерей располагаемой работы. Действительно, при дросселировании газ не производит полезной работы над внешним объектом работы, а кинетическая энергия газа не меняется, поэтому вся работа расширения газа от давления до давления Рг и работа piVi — P2V2, которую производит окружающая среда при проталкивании газа через дроссель, затрачивается на преодоление сил трения и переходит в теплоту трения  [c.224]

Более точное исследование процесса дросселирования вандер-ваальсова газа, а также опытные данные с реальными газами показывают, что реальный газ имеет бесконечно большое число точек инверсии, которые образуют на рГ-диаграмме так называемую инверсионную кривую. Уравнение инверсионной кривой, если известно уравнение состояния реального газа, может быть получено в явной форме из приведенного ранее соотношения  [c.224]

Почему процесс дросселирования нельзя назвать изоэн-тальпным  [c.231]

Энтропия после дросселировния равна = 8,3 кдж/кг-град. Процесс дросселирования является типичным необратимым процессом и всегда сопровождается увеличением энтропии. По условиям данной задачи энтропия увеличилась  [c.232]

Схема холодильной компрессорной установки, работаюш,ей на парах аммиака (NH3), представлена на рис. 21-8. В компрессоре сжимается аммиачный сухой насыщенный пар или влажный пар с большой степенью сухости по адиабате 1-2 до состояния перегретого пара в точке / (рис. 21-9). Из компрессора пар нагнетается в конденсатор, где полностью превращается в жидкость (процесс 1-5-4). Из конденсатора жидкий аммиак проходит через дроссельный вентиль, в котором дросселируется, что сопровождается ионижением температуры и давления. Затем жидкий аммиак с низкой температурой поступает в охладитель, где, получая теплоту (в процессе 3-2), испаряется и охлаждает рассол, который циркулирует в охлаждаемых камерах. Процесс дросселирования, как необратимый процесс, изображается на диаграмме условной кривой 4-3.  [c.336]

Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]

Особенно интересные результаты получены при измерении распределения температуры по толщине пористого образца с объемным тепловыделением и при визуальном наблюдении картины истечения двухфа> ной смеси на его внешней поверхности. В таких режимах профиль температуры имеет максимум в начале области испарения. После него в направлении к внешней поверхности, несмотря на интенсивный подвод теплоты от матрицы к двухфазному потоку, температура последнего, а вместе с ней и температура матрицы в зоне испарения понижается вслед за температурой насыщения паровой фазы испаряющейся смеси. В этой зоне на рассмотренный ранее процесс дросселирования двухфазной смеси накладывается интенсивный подвод теплоты от каркаса. Полученные результаты позволяют сделать вывод о том, что вплоть до достигнутой плотности объемного тепловыделения = 14 10 Вт/м между порис-80  [c.80]


На рис. 114 дана диаграмма ip для углекислоты с изображением цикла холодильной установки. Точка 1 характеризует состояние сухого насыщенного пара на выходе из испарителя и перед поступлением его в компрессор, линия /—2—процесс адиабатного сжатия в компрессоре (s = onst), точка 2 — состояние сжатой углекислоты, линия 2—3 — процесс отдачи теплоты ( ) в конденсаторе при постоянном давлении. Процесс дросселирования в редукционном вентиле можно условно представить вертикалью 3—4, а процесс испарения углекислоты — линией 4—/.  [c.268]

Сравнение адиабатического расширения с дросселированием. Метод ожижения газа, основанный на использовании эффекта Джоуля — Томсона (дросселирование), в принципе не может быть таким эффективным, как метод адиабатического расширения, вследствие неизбежных термодинамических необратимых потерь, присущих процессу дросселирования. Всякая необратимость, введенная в холодильный цикл, должна снижать его к. п. д. При изоэнтальпическом расширении (дросселировании) изменение энтропии с давлением дается формулой  [c.78]

Температуры инверсии большинства газов, за исключением водорода и гелия, достаточно велики, и процессы дросселирования обычно идут с понижением температуры. Это понижение температуры впервые было исследовано Джоулем и Томсоном и получило название эффекта Джо /ля— Тожона. Этот эффект дросселирования используется на практике для получения низких температур.  [c.141]

В парокомпрессорных холодильных установках в основном осуществляются те же процессы, что и в воздушной холодильной машине. Но благодаря тому, что рабочее тело цикла — низкоки-пящая жидкость, можно холодильный цикл расположить в двухфазной области состояний, в которой изобарные процессы теплообмена будут протекать изотермически. Кроме того, понижение давления в цикле можно осуществить не в детандере, а в дроссельном вентиле, в котором процесс дросселирования влажного пара сопро-  [c.182]

Если в процессе дросселирования теплота не подводится к рабочему телу и не отводится от него, то уравнение (13.26). можно упростить. Такой процесс иосит название адиабатного дросселирования (q = 0). При дросселировании работа расширения рабочего тела от давления р до давления р., полностью затрачивается на образование турбулентных завихрений и преодоление сопротивления трению. Совершаемая потоком работа трения превращается в теплоту Q,p, которая полностью воспринимается самим потоком. В соответствии со вторым началом термодинамики это приводит к возрастанию энтропии потока, поэтому процесс дросселирования внутренне иеобра-т и м, так как теплоту трения нельзя преобразовать в работу. В случае адиабатного течения 0) без совершения техниче-  [c.20]

Использование процессов дросселирования. Процесс дросселирования находит широкое применение в технике в редукционных устройствах пневмосетей (для снижения давлеття) при регулировании работы различных машин и нагнетателей за счет изменения расхода рабочего тела в редукционно-охладительных устройствах теплоэлектростанций и др. Но особенно широко эффект дросселирования используется в циклах холодильных машин и в криогенной технике.  [c.26]

Процесс дросселирования водяно1о пара в s — (-диаграмме изображен на рис. 13.9. В результате дросселирования его температура понижается, так же как и у всех реальных газов при положительном дроссельном э4 фекте. Поскольку минимальная температура водяного пара на кривой иньерсии равна Т в = 4370 К, то практически при всех значениях исходных параметров пара, используемого в современной теплоэнергетике, возможен только положительный эффект Джоуля — Томсона.  [c.26]


Смотреть страницы где упоминается термин Процессы дросселирования : [c.220]    [c.221]    [c.399]    [c.28]    [c.54]    [c.180]    [c.139]   
Теплотехнический справочник (0) -- [ c.251 , c.254 ]

Теплотехнический справочник Том 1 (1957) -- [ c.251 , c.254 ]



ПОИСК



Влияние температуры наружного воздуха—47. Влияние давления на всасывании—47. Рабочий процесс при наддуве и дросселировании

Дросселирование

Исследование процесса дросселирования. Эффект Джоуля — Томсона

Исследование процессов дросселирования парового потока, шумовых и вибрационных характеристик РОУ

Процесс дросселирования пара

Процесс дросселирования. Эффект Джоуля — Томсона ПО Течение реальных газов по трубопроводам

Процессы дросселирования при разработке нефтегазовых пластов

Процессы истечения и дросселирования газов, паров и жидкостей

Процессы истечения н дросселирования водяного пара Процесс истечения пара и его применение в паровых турбинах

Расчет процесса дросселирования водяного пара по sl-диаграмме

Уравнение процесса дросселирования



© 2025 Mash-xxl.info Реклама на сайте