Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопло кольцевое

На рис. 173 приведены два отводных канала конического сопла кольцевой (рис. 173, а), изготовленный из двух штампованных половин, ось — плоская кривая, f-пост., 2-пост. и коленный (рис. 173, б), составленный из отрезков цилиндрических труб. Эти примеры наглядно показывают аппроксимацию, т. е. замену сложной поверхности простой. На рис. 173, в приведена развертка коленного канала. Как видно, эллипсы преобразовались на развертке в синусоиды. Чертеж развертки выполнен с учетом рационального раскроя.  [c.232]


Обозначения с одним штрихом вверху относятся к рабочей среде (вода), с двумя штрихами — к инжектируемой среде (газу). Индексы 1, 2, 3, 4, 5 относятся соответственно к входному и выходному сечениям сопла, кольцевому сечению входа инжектируемой среды в камеру смешения, сечениям диффузора и камеры окончательного смешения.  [c.116]

Большой практический интерес представляет сопло с центральным телом, принципиальная схема которого дана на рис. 8.13. В таком сопле газ течет по кольцевому каналу (между центральным телом и обечайкой) критическое сечение может регулироваться либо продольным перемещением центрального тела, либо поворотом створок на обечайке. На рис. 8,14 представлены два тина сопла с Р с. 8.13. Схема сопла с центральным  [c.445]

Известна схема сопла с центральной вставкой (рис. 8.16), у которого критическое сечение также кольцевое, но расширение сверхзвукового потока происходит в нем с поворотом около наружной стенки, а не центрального тела. За центральной вставкой А образуется полость со свободной границей, размеры которой зависят от числа Маха па выходе из сопла (с увеличением числа М полость сокращается).  [c.447]

Продукты сгорания топлива, двигаясь вдоль сопла 1 (рис. 4.3.2), отрываются от кольцевого уступа 3 и, повернувшись на некоторый угол в волне разрежения 2, присоединяются к поверхности насадки 7. В таком отрывном течении зарождаются хвостовой скачок уплотнения 8, застойная зона 6 с возвратным движением газа и участок смешения 5. Из-за необратимых потерь энергии в скачках уплотнения, на участке смешения и в застойной зоне тяговые характеристики сопл с кольцевыми уступами оказываются хуже, чем у обычных сопл. Однако эти характеристики могут быть улучшены путем вдува газа через отверстия 4 в уступе. На практике используют с л а бый и тангенциальный (интенсивный) вдувы. В первом случае газ попадает в насадок через перфорированную стенку уступа 3 (рис. 4.3.2) с малой скоростью и небольшими расходами. Во втором случае движение характеризуется большими скоростями и расходами газа, вдуваемого через свободное пространство в уступе (рис. 4.3.3). При интенсивном вдуве большие расходы газа приводят к значитель-  [c.318]

Топливо впрыскивается через сопло кольцевого сечения, образованное штифтом иглы п отверстием в распылителе. Пружина затяги-Елется такпл образом, чтобы давление начала подачи было строго определенным. Для различных марок дизелей давлеиие затягивания пру-  [c.94]


Одной из основных геометрических характеристик вихревой трубы является радиус разделения вихрей г . Физико-математическая модель, построенная на гипотезе взаимодействия вихрей, позволяет рассчитывать величину на режимах, когда истечение из отверстия сопла-завихрителя соответствует критическому. Для докритических режимов истечения обычно принимают rj = г, [116]. Это весьма жесткое допушение, так как оно исключает возможность формирования свободного квазипотенциального закрученного потока в узкой кольцевой зоне, прилегающей к внутренней цилиндрической поверхности камеры энергоразделе-ния. Практически это означает полное отсутствие возможности взаимодействия вихрей, так как будет существовать лишь один приосевой вынужденный вихрь, вращающийся как квазитвердое тело. Устранить это внутреннее противоречие можно, если в математическую модель ввести оценку значения rj, основанную на законах сохранения массы, энергии и момента количества движения с учетом особенностей турбулентного характера течения. Рассмотрим модель вихревой трубы с тангенциальным вдувом газа через щель сопла на внутренней поверхности трубы радиусом  [c.188]

Опишем цикл предлагаемой установки изображенный на Т, S-н Р, i — диаграммах (рис. 8.20). В предлагаемой установке в вихревой трубе происходит сепарация конденсата — жидкой фазы хладагента и отвод части несконденсировавшегося газа. Как уже отмечалось, вихревая труба выполняет роль конденсатора и расширительного устройства с переохладителем. После процесса охлаждения 2"—2 рабочее тело через завихритель 13 подается в вихревую трубу 3 в виде интенсивно закрученного вихревого потока. В процессе энергоразделения повышается температура у периферийного потока, перемещающегося от соплового ввода за-вихрителя 13 к крестовине 7. Температура периферийных масс газа на 30—50% выше исходной. Этот факт и высокий коэффициент теплоотдачи от подогретых масс газа к стенкам камеры энергетического разделения 14 приводит к интенсификации теплообмена и уменьшению потребной поверхности теплообмена у конденсатора, а, следовательно, обеспечивает уменьшение его габаритов и металлоемкости. В приосевом вихре, имеющем пониженную температуру за счет расширения в процессе дросселирования и вследствие реализации эффекта Ранка, происходит конденсация. Образовавшиеся капли влаги отбрасываются центробежными силами на периферию. Часть конденсата вытекает через кольцевую щель 18 в конденсатосборник, а другая уносится потоком и вытекает через кольцевое коническое сопло 9 в камеру сепарации 4. По стенкам камеры сепарации жидкая фаза хладагента стекает и отводится в испаритель 10. Из испарителя 10 жидкая фаза прокачивается насосом 11 через охлаждаемый объект 12, охлаждает его и возвращается в испаритель 10. Из испарителя 10 паровая фаза через сопло 17 поступает в вихревую трубу в центральную ее часть в область рециркуляционного течения и через коническое кольцевое сопло 9 выбрасывается в се-парационную камеру 4, откуда в виде паровой фазы всасывается вновь в компрессор 1, сжимается до необходимого давления и вновь возвращается через теплообменник 2 на вход в вихревую трубу 3. По межрубашечному пространству 16 между камерой энергоразделения 14 и кожухом 15 циркулирует охлаждающая  [c.397]

При дальнейшем движении тарели происходит перестройка структуры потока.Сверхкритический перепад давления на кольцевой щели уменьшается до критического, затем до дозвукового. Дозирущее сечение перемещается в цилиндрическую втулку сопла, течение у кромок тарели становится дозвуковым (рис.3,0). Дальнейшее открытие сопла не изменяет картину течения.  [c.17]

Определение геометрической площади кольцевого сопла производится совместным решением уравнений регулирующих поверхностей методами аналитической геометрии. Определение коэ11фиЩ1ента расхода газа при разных режимах райоты является задачей акопериментального исследо-Банил.  [c.18]

В настоящей работе рассматривались кольцевые сопла, шнещие оле-дующие значения геометрических параметров =0,25 = 1,25 /tj =  [c.29]

Исследованы расходные и импульсные характеристики моделей регулируете кольцевых сопел с несимметричным входом и цилиндрической сверхзвуковой частью. На основания имеющихся результатов анализиру-етгл влияние геометрия тареля и входных кромок сопла на картину течения, расходные и импульсные характеристики.  [c.141]


Исходный газ, имеющий давление Р , температуру Г,, и компонептн. лй состав С, , истекает из сопла / (см, рис. 6.3) в вихревую камеру 2 термотрансформатора, содержащего также диафрагму 3 с отверстием 4 и дроссель 5, между которыми и стенками камеры энергоразделения 6 имеется кольцевое отверстие 7. В камере энергоразделения 6 из исходного газа образуются свободный Я и вынужденный 9 вихри. Свободный вихрь вихревой камеры 2 и камеры энергоразделения 6 и истекает через кольцевое отверстие 7. Вынужденный вихрь 9 находится в приосевой области струйного течения. Между свободным 8 и вынужденным 9 вихрями располагается пограничный слой К), состоящий из газа, перетекающего из  [c.160]

Вторая модификация эжекционного аппарата со струйным течением кавити-рую1цей жидкости представляет собой конструкцию (см. рис. 9.11,а), содержащую форкамеру с патрубком подводящим высоконапорную жидкость и конфузор, в котором высоконапорная жидкость ускоряется, сужающееся сопло с патрубком, подводящим низконапорную среду, расширяющуюся камеру смешения, прямолинейный участок и диффузор. Камера смешения узким концом подсоединена к суженному концу конфузора, а к широкому концу камеры смепюния подсоединен прямолинейный участок с диффузором. Соосно с форкамерой, конфузором и камерой смешения располагается сужающееся сопло, причем срез отверстия выхода сопла находится в начале камеры смешения, критическое сечение К-К. Между стенками сопла и внутренними поверхностями конфузора и камеры смешения имеется кольцевая щель, через которую протекает высоконапорная среда.  [c.231]

Назначение сопел — с ми- нимальными потерями подвести газы к входу в смесительную камеру. Расположение сопел может быть таким, как на рис. 9.4 (эжектирую-щий поток внутри, а эжек-тируемый—по периферии камеры), и обратным (рис. 9.1), когда эжектирующий газ подается в камеру по внешнему кольцевому соплу. Для сокращения длины камеры смешения один или оба потока могут быть разделены на несколько струй, что требует соответствующего увеличения количества сопел.  [c.494]


Смотреть страницы где упоминается термин Сопло кольцевое : [c.120]    [c.165]    [c.307]    [c.494]    [c.110]    [c.210]    [c.239]    [c.168]    [c.354]    [c.396]    [c.10]    [c.11]    [c.13]    [c.13]    [c.14]    [c.15]    [c.15]    [c.17]    [c.18]    [c.18]    [c.19]    [c.20]    [c.24]    [c.24]    [c.25]    [c.31]    [c.31]    [c.35]    [c.142]    [c.159]    [c.193]    [c.448]    [c.319]    [c.319]   
Турбинное оборудование гидростанций Изд.2 (1955) -- [ c.50 ]



ПОИСК



Критическое стационарное истечение вскипающей жидкости через трубы и сопла . Критический поток в дисперсно-кольцевом режиме течения

О некоторых течениях сжатия в неосесимметричных кольцевых соплах (совм. с Л.Н. Коротаевой)

Сопло

Течение в кольцевых соплах

Течение в сопле, экспериментальные толщина кольцевого слоя чистой вод

Течения в кольцевых соплах и криволинейных каналах

Численное исследование влияния формы дозвукового участка на течение идеального газа в трансзвуковой области кольцевого сопла



© 2025 Mash-xxl.info Реклама на сайте