Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения тела вокруг неподвижной точки

Тело с одной закрепленной точкой. Определить общие уравнения движения тела вокруг неподвижной точки под действием заданных ударных импульсов.  [c.270]

Движение тела вокруг неподвижной точки задано при помощи углов Эйлера следующими уравнениями ф == nt, i[i = я/2 -f ant, о == я/3. Определить проекции угловой скорости и углового ускорения тела на неподвижные оси, если а и п постоянные величины. Указать также то значение параметра а, при котором неподвижным аксоидом тела будет плоскость Оху.  [c.150]


Динамические уравнения Эйлера движения тела вокруг неподвижной точки в проекциях на подвижные оси, скрепленные с телом, под действием только силы собственного веса имеют вид  [c.454]

Движение тела вокруг неподвижной точки. Углы Эйлера. Уравнения движения  [c.108]

Одной из классических задач механики является задача о движении твердого тела вокруг неподвижной точки. Эта задача имеет первостепенное значение для теории гироскопов, нашедшей широкое применение в различных областях современной техники. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо дал для того же самого случая наглядную геометрическую интерпретацию. Лагранж решил эту задачу в том случае, когда твердое тело имеет динамическую ось симметрии, проходящую через неподвижную точку. После Эйлера и Лагранжа многие ученые пытались найти новый случай решения этой задачи, т, е. новый случай интегрируемости дифференциальных уравнений движения твердого тела вокруг неподвижной точки, но безуспешно.  [c.17]

Эти равенства называются уравнениями или законом движения тела вокруг неподвижной точки.  [c.73]

Аналитически движение твердого тела вокруг неподвижной точки определяется уравнениями (76) предыдущего параграфа. Рассмотрим теперь это движение с геометрической точки зрения. Как увидим ниже, геометрическая картина движения тела вокруг неподвижной точки аналогична той, которую для плоскопараллельного движения тела дает теорема о центроидах ( 81).  [c.332]

Рассмотрим один интересный частный случай движения тела вокруг неподвижной точки, в котором уравнения Эйлера можно проинтегрировать в элементарных функциях именно, пусть /зс = /у и Мо = 0. Мы имеем из третьего уравнения (10.5)  [c.253]

Уравнения (68), определяющие закон происходящего движения, называются уравнениями движения твердого тела вокруг неподвижной точки.  [c.148]

Таким образом, результирующее движение также является вращением твердого тела вокруг неподвижной точки. Поэтому все сказанное в предыдущем параграфе относительно определения скоростей и ускорений точек твердого тела, нахождения уравнений подвижного и неподвижного аксоидов, углового ускорения может быть применено в данном случае.  [c.480]


Проинтегрировав эту систему уравнений (при наличии заданных начальных условий движения), определяют Шд, ш ,, ш , а также уравнения вращения твердого тела вокруг неподвижной точки  [c.524]

В системе уравнений движения выделяются две группы три уравнения поступательного движения тела вместе с точкой А и три уравнения движения тела вокруг точки А. Если рассматривать кинетический момент тела относительно неподвижной точки О, то указанные группы уравнений движения примут вид  [c.448]

Найти функцию Гамильтона и написать уравнения Гамильтона для случая Эй.пера движения твердого тела вокруг неподвижной точки (см. 6.7). В качестве Лагранжевых координат принять углы Эйлера.  [c.700]

ДИНАМИЧЕСКИЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ  [c.452]

Динамические уравнения Эйлера движения твердого тела вокруг неподвижной точки под действием силы тяжести  [c.453]

Эти функциональные зависимости называются уравнениями движения твердого тела вокруг неподвижной точки, так как они определяют закон его движения.  [c.109]

Соотношения (III. 12) и (III. 14) образуют полную систему дифференциальных уравнений движения твердого тела вокруг неподвижной точки.  [c.413]

Задача исследования движения твердого тела вокруг неподвижной точки приводится к нахождению четвертого первого интеграла системы уравнений (III. 16). Именно такая постановка общей задачи о движении абсолютно твердого тела соответствует направлению исследований К. Якоби.  [c.415]

Найденное соотношение является интегралом энергии. Пуансо показал, что, пользуясь интегралами (111.21) и (111.22), можно дать общую геометрическую интерпретацию движения твердого тела вокруг неподвижной точки по инерции. Чтобы получить результат Пуансо наиболее простым способом, рассмотрим уравнение эллипсоида инерции  [c.416]

Уравнения герполодии нельзя получить в конечной форме, аналогичной уравнениям полодии, которые не требуют интегри-рова ния дифференциальных уравнений движения твердого тела вокруг неподвижной точки.  [c.418]

Уравнения движения твердого тела, имеющего одну неподвижную точку. Если твердое тело движется таким образом, что какая-нибудь одна его точка остается неподвижной, то такое движение называется движением твердого тела вокруг неподвижной точки или сферическим движением. При этом неподвижная точка может или принадлежать телу, или находиться вне тела, но тогда следует представлять себе, ЧТО она каким-нибудь образом неизменно связана с телом, например при помощи стержня. Примером твердого тела, имеющего одну неподвижную точку, может служить волчок, заостренный конец ножки которого упирается в гнездо, сделанное в подставке, так что этот конец ножки при вращении волчка остается неподвижным.  [c.375]

Мы рассмотрим лишь наиболее простые случаи интегрирования дифференциальных уравнений движения твердого тела вокруг неподвижной точки, а именно случай Эйлера и случай Лагранжа.  [c.703]

Наиболее простой вид полученные уравнения движения твердого тела вокруг неподвижной точки имеют, когда за подвижные оси ж, г/, Z выбраны главные оси эллипсоида инерции, построенного относительно неподвижной точки О. В этом случае  [c.183]

Таким образом, движение совершенно свободного твердого тела разложено на движение центра маос (уравнения (6.10)) и на движение вокруг центра масс как движение вокруг неподвижной точки (уравнения (6.11)). Оба эти движения были изучены ранее — в динамике точки и в движении твердого тела вокруг неподвижной точки.  [c.208]

В заключение приведем таблицу некоторых характеристик и уравнений, определяющих поступательное движение (столбец 1) и вращение тела вокруг неподвижной точки (столбец 2)  [c.74]

После Даламбера Эйлер представил в окончательном виде уравнения движения твердого тела вокруг неподвижной точки ). Он же первый нашел точные интегралы в случае, когда внешние силы равны нулю, или имеют равнодействующую, проходящую через неподвижную точку. (См. Мемуары Берлинской Академии за 1758 г.)  [c.136]


Проинтегрировать уравнения движения твердого тела вокруг неподвижной точки в случае, когда эти уравнения имеют вид  [c.207]

Уравнения Эйлера. Уравнения Лагранжа позволяют легко получить уравнения Эйлера для движения твердого тела вокруг неподвижной точки.  [c.282]

Кинетический момент н кинетическая энергия тела, имеющего неподвижную точку. Согласно теореме Шаля произвольное перемещение твердого тела можно разбить на поступательное и вращательное. Таким образом, эта теорема указывает на возможность разделения задачи о движении твердого тела на две отдельные части, одна из которых касается только поступательного движения, а другая — только вращательного. В том случае, когда одна точка тела неподвижна, такое разделение является очевидным, так как в этом случае имеется только одно вращательное движение вокруг неподвижной точки, а поступательное движение отсутствует. Однако и в более общих случаях движения такое разделение часто оказывается возможным. Шесть координат, описывающих движение тела в соответствии с таким разделением, уже были нами рассмотрены. Это —три декартовы координаты некоторой фиксированной точки твердого тела (они описывают посту-пательное движение) и, например, три угла Эйлера, служащие для описания движения тела вокруг этой точки. Если начало подвижной системы выбрать в центре масс тела, то согласно уравнению (1.26) полный кинетический момент его распадается на две части одну  [c.163]

Если сила Г не зависит от угловой скорости, а момент М — от скорости поступательного движения, то уравнения (25.1) и (25.2) можно рассматривать независимо друг от друга. В баллистике, например, это не имеет места. В случае же, когда такое раздельное рассмотрение этих двух уравнений допустимо, уравнение (25.1) соответствует просто задаче из механики точки, а уравнение (25.2) — задаче о вращении твердого тела вокруг неподвижной точки или, короче, задаче о движении волчка.  [c.178]

Интегрирование дифференциальных уравнений движения твердого тела, которое вращается вокруг закрепленной тонки и на которое не действуют никакие силы. Устойчивость вращения вокруг оси наибольшего и наименьшего моментов инерции. Случай равенства двух из трех главных моментов инерции. Вращение тяжелого твердого тела вокруг неподвижной точки. Интегрирование полученных дифференциальных уравнений при некоторых предположениях)  [c.56]

Дифференциальные уравнения движения твердого тела вокруг неподвижной точки, полученные в предыдущей лекции, т. е. уравнения (16) и (17), можно проинтегрировать в специальных случаях. Первый случай тот, когда не действуют никакие силы. В этом случае уравнения имеют вид  [c.56]

Если Jx ) Jy Jz и Jxy Jxzi Jyz —осевые и центробежные моменты инерции, ар, г — проекции угловой скорости тела на оси Ож, Оу Oz то векторное уравнение (8) запишется в виде трех скалярных уравнений (3) п. 97, в правых частях которых появятся дополнительные слагаемые М Mz являющиеся проекциями момента реактивных сил на оси Ож, Оу Oz, В общем случае, когда момент внешних сил зависит от ориентации тела в пространстве, при исследовании движения тела вокруг неподвижной точки к этим уравнениям надо добавить еще три кинематических уравнения Эйлера.  [c.265]

Движение твердого тела вокруг неподвижной точки и движение свободного твердого тела. Для составления дифференциальных уравнений движения тела, имеющего неподвижную точку, необходимо найги выражения главного момента количеств движения Kq (кинетического момента) и кинетической энергии Т тела в этом случае движения.  [c.407]

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы. Рассмотрим движение твердого тела вокруг неподвижной точки О в однородном поле тяжести. Ось 0Z пеиодвткной системы координат направим BepTH-< калыю вверх. С движущимся телом жестко свяжем систему координат Oxyz, осп которой направим вдоль главных осей инерции тела для неподвижной точки О.  [c.169]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Наконец, Ковалевская в работе, премированной Академией наук (A ta mathemati a, т. XII), нашла еще один случай интегрируемости уравнений движения твердого тела вокруг неподвижной точки.  [c.137]


Случай интегрируемости Ковалевской. В работе, премированной в 1888 г. Парижской Академией наук и помещенной в т. XII A ta mathema-ti a, Ковалевская рассмотрела новый случай интегрируемости уравнений движения тяжелого твердого тела вокруг неподвижной точки. Приведем сначала форму уравнений движения, из которой исходила Ковалевская.  [c.186]


Смотреть страницы где упоминается термин Уравнения движения тела вокруг неподвижной точки : [c.153]    [c.224]    [c.703]    [c.136]    [c.208]    [c.156]    [c.378]   
Курс теоретической механики (1965) -- [ c.332 ]



ПОИСК



Движение вокруг неподвижной оси

Движение вокруг неподвижной точки

Движение изменяемого твердого тела (Уравнения Лиувилля) Обобщенная задача о движении неголономного шара Чаплыгина Движение шара по сфере Ограниченная постановка задачи о вращении тяжелого твердого тела вокруг неподвижной точки Неинтегрируемость обобщенной задачи Г. К. Суслова Движение спутника с солнечным парусом

Движение тела вокруг неподвижной

Движение тела вокруг неподвижной точки

Движение тела вокруг неподвижной точки. Углы Эйлера. Уравнения движения

Динамические дифференциальные уравнения движения твердого тела вокруг неподвижной точки

Дифференциальные уравнения движения твердого тела вокруг неподвижной точки. Динамические уравнения Эйле. 98. Первые интегралы

Дифференциальные уравнения движения твердого тела вокруг неподвижной точки. Динамические уравнения Эйлера

Неподвижная точка

Тело с неподвижной точкой

Точка — Движение

Уравнение точки

Уравнения движения весомого твёрдого тела вокруг неподвижной точки

Уравнения движения твердого тела вокруг неподвижной точки

Уравнения движения тела вокруг оси

Уравнения движения точки

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы



© 2025 Mash-xxl.info Реклама на сайте