Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Захваты характеристика

Одной из вал<ных характеристик геометрических свойств манипулятора является его маневренность число степеней свободы при неподвижном захвате. Манипулятор, изображенный на рис. 5.6, имеет маневренность, равную единице (т=1). Для оценки геометрических и кинематических свойств манипуляторов и промышленных роботов вводятся такие показатели, как угол и коэффициент сервиса, зона обслуживания.  [c.169]

Разработка принципов создания материалов, способных выдерживать высокие радиационные нагрузки, безусловно, одна из актуальных задач физики твердого тела, и аморфные материалы оказались одним из интереснейших испытуемых объектов, поскольку в них не могут возникать дефекты, типичные для кристаллов. Имеющиеся данные показывают, что, действительно, некоторые аморфные сплавы, например Pd — Si [61], не теряют своих прочностных характеристик и после значительного радиационного воздействия. К сожалению, ряд интересных в практическом отношении аморфных материалов содержит элементы (например, бор) с высоким сечением захвата нейтронов. Поэтому при создании материалов с высокими физическими свойствами и одновременно с высоким сопротивлением действию радиации необходимо уделять особое внимание выбору состава сплава. Следует также учитывать возможную кристаллизацию под действием радиации.  [c.289]


Для испытания на растяжение используют специально изготовленные образцы, которые большей частью вытачивают из прутковых заготовок или вырезают из листа. Основной особенностью таких образцов является наличие усиленных мест захвата и плавного перехода к сравнительно узкой ослабленной рабочей части. На рис. 1.22 показано несколько типов таких образцов. Длину рабочей части /раб выбирают обычно раз в 15 большей диаметра d. При замерах деформаций используют только часть этой длины, не превышающую десяти диаметров. Существуют, однако, и более короткие образцы, у которых отношение /раб/ <5. В случае прямоугольного поперечного сечения в качестве характеристики, определяющей рабочую длину /раб> принимает диаметр равновеликого круга d.  [c.64]

Одной из основных характеристик испытательной машины является жесткость. Согласно ГОСТ 7855—84 жесткость испытательной машины определяется как величина, обратная податливости, которая равна перемещению подвижного захвата на единицу приложенной силы Р. Перемещение подвижного захвата А/ в области упругой деформации включает суммарную упругую деформацию нагруженных частей машины. Таким образом, жесткость машины  [c.32]

Техническая характеристика пределы статического нагружения 15000—30000 Н (1500—3000 кгс), 20000 Н ( 2000 кгс) частота нагружения 1500 или 3000 цикл/мин расстояние между захватами 380 is мм диаметр рабочей части образца 10 мм ширина до 20 мм температура нагрева 400—1100°С нестабильность температуры нагрева 6°С общая мощность 1,5 кВт габариты 1,6X3,0X2,1 м масса 2665 кг.  [c.153]

Для получения характеристик кратковременной прочности к образцу, находящемуся между неподвижным и подвижным 1 захватами, прикладывается растягивающая нагрузка от нагружающего механизма через шток 4, проходящий в сменной направляющей 5, и призматический ловитель 3, действующий на динамометрическую балочку  [c.83]

Деформация образцов при высокотемпературных испытаниях наиболее просто определяется по перемещению подвижного захвата микромашины. Такой метод является основным при испытаниях малых образцов, проволок, фолы. Для более точного измерения характеристик пластичности нами разработано и применяется несколько специальных способов и устройств [42—44], которые также основаны на записи перемещения подвижного захвата машины.  [c.114]

Точность и корректность механических характеристик, получаемых при высокотемпературных исследованиях, во многом зависит от способа крепления образца в захватах испытательных машин. В практике испытаний применяют ряд методов и устройств для крепления волокон, нитей, проволок, фолы и лент в захватах.  [c.119]


Оба предложенных способа испытания гибких образцов на растяжение позволяют увеличить точность определения характеристик пластичности материалов. Э( ект достигается исключением из результата измерения удлинения погрешностей, вызываемых деформацией нерабочих участков образца, его проскальзыванием и обжатием в захватах.  [c.121]

Таким образом, главная опасность заключается в том, что под действием облучения может нарушиться симметричность характеристик термисторов, что приведет к различию между прямым и обратным сопротивлением во всех случаях, где закись меди является одним из основных компонентов смеси. Остальные окислы металлов ведут себя под облучением в основном подобно закиси меди, причем в большинстве случаев наблюдается остаточный эффект ионных смещений вблизи поверхности материалов. Ионные смещения, например, в окиси цинка [5] уменьшают каталитическую активность окислов. В связи с этим появляется возможность рассеяния или захвата электронов ловушками, что может изменить важные для термисторов электрические характеристики.  [c.362]

Целью большинства опытов было получение сведений о влиянии излучения на такие структурные характеристики, как прочность при растяжении, изменения кристаллической структуры, сечение захвата,  [c.393]

Первый аспект — это математическое моделирование тела человека. При этом будет сделан упор на модели руки, так как акустические характеристики руки в значительной мере зависят от позы (углов сгиба плеча и предплечья, кисти и предплечья), плотности захвата и усилия нажатия. В отличие от одномерных моделей, где фигурируют эффективные параметры, в рассматриваемой модели все параметры определяются на основании анатомических данных, реальных весовых характеристик и геометрических размеров, и поэтому эта модель будет называться антропометрической. Указанный подход может быть распространен и на другие части тела, так как они состоят примерно из таких же элементов, но в этих случаях влияние таких факторов, как поза и вес, незначительно, поэтому для общей вибрации могут быть использованы более простые моде-дели.  [c.65]

Испытание на растяжение и сжатие. В связи с неоднородностью напряженного состояния в образце возникают значительные погрешности, которые существенно зависят от закрепления образца в захватах испытательной машины. При испытаниях образцов в направлениях, несовпадающих с осями упругой симметрии, происходит их перекос и скручивание. Кроме того, при испытаниях образцов из анизотропных материалов в произвольном направлении происходит поворот и смещение поперечных сечений из-за сдвиговых деформаций. Известно, что при обычных испытаниях абсолютно свободной деформации образца не происходит. В зажимных приспособлениях испытательных машин вблизи поверхностей захвата в образцах вследствие стесненной деформации возникает неоднородное напряженное состояние. Влияние закрепления образца на характер напряженного состояния снижается по мере удаления от мест захвата, тогда при достаточной длине образца и ограниченной ширине можно говорить об однородном напряженном состоянии в его средней части. Однако дополнительные напряжения, возникающие вблизи места захвата, часто оказываются определяющими, что приводит к преждевременному разрушению образцов у торцовых сечений. Учитывая различие характеристик прочности при растяжении и сжатии композиционного материала, важно обеспечить минимальный эксцентриситет приложения нагрузки при испытаниях на сжатие.  [c.144]

К приводам и системам управления промышленных роботов предъявляют ряд специфических требований, поскольку их работа несколько отлична от работы станка. При обслуживании станка захват робота должен перемещать значительную массу по сложной траектории от транспортера или распределителя до зажимного устройства стайка. Этот перенос должен занимать минимальное время с точной фиксацией конечного положения, которое обусловливается конструкцией зажима АТК- Такие условия работы предъявляют повышенные требования к статическим и динамическим характеристикам привода.  [c.160]

Конструктивная и динамическая схемы испытательных машин в основном предопределяются применяемым способом сило-возбуждения. Обоснованный выбор способа возбуждения нагрузок может быть произведен при конкретизации характеристик прочности и жесткости объектов испытаний и параметров режима нагружения. При испытаниях стандартных образцов из конструкционных металлов на усталость осевая деформация образца не превышает 0,1—0,5 мм. С учетом жесткости динамометра и элементов силового замыкания машины максимальное реализуемое перемещение активного захвата может быть ограничено  [c.147]


Кроме того, в справочнике имеются сведения об основных видах смазывающе-охлаждающих жидкостей, применяемых при различных видах обработки в зависимости от обрабатываемого материала, а также основные характеристики и нормы расхода смазочных материалов, для различного вида металлорежущих станков. В разделе, посвященном механизации и автоматизации процессов обработки, описываются основные автоматизирующие устройства, приводятся схемы и указываются области применения магазинных устройств, отсекателей, питателей, механизмов захвата и ориентации, автоматизированных средств контроля и управления процессом.  [c.3]

Характеристика механизмов захвата и ориентации и область их применения в зависимости от типа деталей и размеров  [c.457]

Характеристика механизма захвата и ориентации И Область применения размерная характеристика обрабатываемых заготовок  [c.457]

Характеристика механизма захвата и ориентации Область применения и размерная характеристика обрабатываемых заготовок  [c.458]

Характеристика, механизма захвата и ориентации  [c.459]

В табл. 290 приводится характеристика механизмов захвата и ориентации и указывается область их применения в зависимости от типа детали п ее размеров.  [c.460]

Технические характеристики гидравлических автоматизированных захватов зарубежного производства приведены в табл. 12.  [c.83]

Установка для испытаний на усталость при совместном действии внутреннего давления и осевой нагрузки (табл. 3, № 6). В некоторых случаях в установке ОНД для создания давления используют стандартный гидроцилиндр, Одна из таких установок, предназначенная для испытания трубчатых образцов, изображена на рис. 8. Осевую нагрузку прикладывают при помощи расположенного внизу гидроцилиндра, а внутреннее давление создается другим осевым гидроцилиндром, расположенным на верхней траверсе. Образец 7 через гайки 6 крепится винтами к верхнему и нижнему S захватам. Для создания внутреннего давления используют две камеры камеру низкого давления / и камеру высокого давления 5. В камеру низкого давления 1 и внутрь образца подается масло из гидросистемы через штуцер 9. При движении поршня 2 вниз происходит перекрытие отверстий, соединяющих камеру высокого давления 3 с камерой низкого давления 1 и при дальнейшем движении поршня 2 вниз происходит увеличение давления масла. Для повышения характеристик системы внутрь образца вставляется заполнитель 5, который позволяет уменьшить рабочие объемы масла, что  [c.19]

Технические характеристики маятниковых копров зарубежного производства приведены в табл. 2 и 3. Анализ технических характеристик и конструкций зарубежных маятниковых копров показывает, что они обеспечивают проведение ударных испытаний по методу двухопорного изгиба (метод Шарпи), по методам консольного изгиба (метод Изода), ударного растяжения и ударного сдвига. Предельные запасы маятников 0,5— 2500 Дж. По метрологическим параметрам копры соответствуют основным международным стандартам подавляющая часть копров выполнена по классической схеме. В копрах, рассчитанных на большие запасы энергии и имеющих тяжелые маятники, как правило, автоматизированы захват и подъем маятника.  [c.105]

В ротационных копрах кинетическая энергия запасается за счет разгона маховых масс, которые затем сцепляются с активным захватом, деформируя образец. Вращающийся диск (или гибкий орган, например цепь) снабжается бойком, который срабатывает в определенный момент, ударяя по захвату. Механизм автоматического выброса бойка — наиболее сложный в ротационных копрах. В некоторых конструкциях, наоборот, под боек подается активный захват. В табл. 4 приведены технические характеристики зарубежных ротационных копров.  [c.108]

Испытание на растяжение. Обычно цилиндрической формы образец с утолщениями по концам (для укрепления в захваты испытате.И)Пой машины) растягивается. В современных машинах (Цвик, Инстроп, MTS) скорость растяжения может изменяться в широких пределах от 0,003 до 3000 мм/мип. При больших скоростях деформации такое испытание считается динамическим (ударным). Большинство испытательных машин снабжено диаграммным аппаратом, записывающим кривую деформации (см. рис. 40 и 42), на которой можно найти интересующие величины прочности и иластичности (Ов, <Уа,ъ S, ), хотя деформационные характеристики (б, г )) или характеристики, связанные с малыми деформациями (Е, To.oi и др.), следует определять, измеряя деформацию непосредственно на образце (во время испытания или после его разрушения).  [c.77]

Появление пара в опускных трубах приводит к увеличению гидравлического сопротивления в них и изменению гидравлической характеристики опускной системы. При этом в некоторых трубах подъемной системы может произойти нарушение циркуляции. В опускной системе пар может появиться в результате захвата его из барабана котла или парогенератора (корпуса испарителя, паро-преобразователя или выпарного аппарата) вследствие кавитации или (если система обогревается) образоваться там непосредственно. Образование пара в опускных трубах возможно также при резком уменьшении давления.  [c.64]

Крепление образца в захватах. Создание на основе высокопрочных армирующих волокон полимерных композиционных материалов порождает значительные трудности получения стабильных значений предела прочности при растяжении этих материалов 39]. Особенно они проявляются при испытании трехмерноармнрованных материалов, изготовленных на основе углеродных волокон. Опытные данные и характер разрушения образцов свидетельствуют о том, что сложность получения стабильных и воспроизводимых характеристик прочности при растяжении композиционных материалов обусловливается главным образом необ.ходимостью надежного крепления образца в захватах испытательной машины (для исключения проскальзывания), а также влиянием формы и размеров образца. Учет этих факторов особенно необходим при испытании высокопрочных композиционных материалов. Проскальзывание образца в захватах приводит к появлению па его поверхности царапни, сколов и вмятин. Повторное нагружение образца после проскальзывания часто усугубляет эти дефекты н способствует разрушению образца в местах повреждения 23, 74]. Во избежание указанного явления используют различные дополнительные приспособления или устройства, которые усложняют  [c.26]


Анализ напряжений. Композиционные материалы с пространственным расиоложение.ч арматуры имеют относительно небольшую толщину. Определение трансверсальных характеристик при растяженнн таких материалов вследствие малости нх размеров сопряжено с определенными трудностями. Во-первых, при малой длине образца СЛО.ЖПО обеспечить его закрепление а захватах испытательной машины во-вторых, не установлена возможность сопоставления опытных данных, полученных на образцах разной длины. Все это вызывает необходимость обос-нопанного выбора размеров образца.  [c.27]

Машину МВП-ЮООО применяют для определения усталостных характеристик жарюпрочных материалов. Предложено [58] испытывать на этой машине цилиндрические образцы, для крепления которых изменена конструкция деталей внутренней части шпиндельных барабанов (вместо конусного соединения применен цанговый захват).  [c.163]

Тех1ническая характеристика машин МИР-8Д и МИР-8 площадь поперечного сечения образца 0,5 см число циклов нагружения в минуту при высокой частоте 3000, при низкой частоте 30—300 динамическая нагрузка 5000 Н ( 500 кгс) максимальная статическая нагрузка 3000 Н (300 кгс) максимальная амплитуда перемещений активного захвата 0,5 мм мощность двигателей 0,6 кВт.  [c.182]

Равенства (34) показывают, что прямоугольный параллелепипед, изготовленный из материала с общей анизотропией, при одноосном однородном напряженном состоянии превращается в не-прямаугольный параллелепипед (на рис. 1, а показано тело, для которого плоскость является плоскостью симметрии). В случае изотропного материала прямоугольный параллелепипед остается прямоугольным (рис. 1, б). Эти различия в поведении анизотропных и изотропных материалов при одноосном напряженном состоянии вызывают некоторые трудности при определении механических характеристик композиционных материалов в направлении, не совпадающем с осью симметрии. Образец, обычно используемый при таких испытаниях, представляет собой длинную полоску (отношение длины к ширине равно - 5—10), вырезанную под некоторым углом к оси симметрии из элементарного армированного слоя или слоистого материала. При одноосном нагружении в продольном направлении образец ведет себя как анизотропное тело с плоскостью упругой симметрии, совпадающей с плоскостью образца, т. е. стремится принять в этой плоскости форму параллелограмма. Захваты, в которых закрепляют образец, препятствуют его свободной деформации, сохраняя пер-воннчальное. направление закрепленных кромок. Как показано в работе Пагано и Халпина [45], в плоскости образца при этом возникает изгибающий момент и при деформировании образец принимает 1У-образную форму (рис. 2).  [c.24]

Низкая прочность композитов во влажном состоянии может быть также связана с пористостью, образовавшейся в результате попадания воздуха в материал при его изготовлении. При действии на1грузки существование таких воздушных полостей приводит к появлению внутренних трещин и тем самым создается возможность проникновения влаги в материал. Наличие больших пустот, размеры которых в несколько раз превосходят размеры волокон, довольно частое явление в композитах, однако его можно избежать, принимая соответствующие меры при изготовлении материала. Следует отметить, что образование микрополостей происходит при всех методах изготовления композитов в процессе пропитки связующим прядей волокна или ткани [9]. При умеренных скоростях пропитки смола не успевает полностью вытеснить воздух, находящийся между волокнами, и в материале остается большое количество воздушных пузырьков диаметром, сравнимым с диаметром волокна. Захват таких микропустот нельзя предотвратить, однако их количество можно существенно уменьшить [45]. Из табл. 4 видно, что при снижении содержания пустот значительно улучшаются усталостные характеристики ком1позитов.  [c.112]

Методика исследования хара гтеристик сопротивления деформированию и разрушению металла труб при малоцикловом нагружении. В настоящее время исследование малоцикловых характеристик конструкционных металлов проводится по разработанной методике с использованием специальных средств и аппаратуры [114, 234]. Широкое применение получает серийно выпускаемая автоматическая испытательная установка типа УМЭ-10Т, обеспечивающая нагружение образца в требуемом режиме (мягкое, жесткое, асимметрия). Испытания проводятся в условиях растяжения — сжатия при непрерывной регистрации параметров нагружения и деформирования. Установка имеет электромеханический привод с устройством выборки зазоров в винтовой паре, пять порядков скоростей перемещения активного захвата (от 0,005 до 100 мм/мин), возможность реверсирования с помощью системы автоматики двигателя электропривода при достижении как заданного усилия, так и заданной деформации. Машина имеет электронно-механическое силоизмерение (от резистивных датчиков, наклеенных на упругий динамометр), снабжена деформометром, обеспечивающим измерение продольной абсолютной деформации рабочей длины образца 2 мм. В необходимых случаях машина укомплектовывается деформометром для измерения поперечных деформаций. Усиленные сигналы (до 1000 1) регистрируются на диаграммном приборе барабанного типа в масштабе 50О X Х500 мм. Точность регистрации параметров нагружения 1—2%. Максимальная частота нагружения порядка 5 циклов/мин.  [c.155]

Для проведения изотермических испытаний при активном нагруншнии с регистрацией диаграмм деформирования и основных механических характеристик статической прочности и пластичности материалов, а также осуществления циклических испытаний при мягком и жестком нагружении с получением диаграмм циклического деформирования и кривых усталости в Институте машиноведения используются установки собственной конструкции растяжения — сжатия механического типа с максимальной гру-зоспособностью 10 тс. Они обладают широким диапазоном скоростей перемещения активного захвата (частота циклического  [c.233]

Материалы для изготовления различной арматуры, специальных устройств и приспособлений, размещаемых в рабочей камере (токо- и термопарных вводов, распределительных колодок, хладопроводов, захватов, нагревателей, шторок, смотровых стекол и т. п.), должны обладать достаточной прочностью при высоких температурах и хорошими изоляционными свойствами или высокой тепло- и электропроводностью, требуемыми оптическими характеристиками, низким коэффициентом газопроницаемости, необходимым газопоглощением (геттерные свойства) и т. д.  [c.30]

Борное волокно выпускают диаметром 100, 130 или 200 мкм. Его получают путем осаждения из паровой фазы на тонкую вольфрамовую проволоку. Технология получения слоистых пластиков, армированных этим волокном, достигла большого совершенства. По опубликованным данным, высокие при комнатной температуре статические и динамические механические свойства этих материалов повышаются при низких температурах при этом другие характеристики изменяются незначительно [7,8]. Прочность при сжатии борэпоксидиых слоистых пластиков при температуре 4 К часто превышает 3450 МПа. Недостатками материалов является большая величина сечения захвата нейтронов и высокая их стоимость.  [c.75]

Бериллий. Бериллий, используемый ныне как легирующая добавка <в сплавах меди, никеля, алюминия), обладая наименьшим из всех металлов сече-инем захвата тепловых нейтронов и достаточно высокими коррозионной стойкостью и жаропрочностью, имеет перспективу конструкционного материала ядерной энергетике. Обладая очень высокой удельной прочностью (выше, чем у титана) вплоть до 500 °С, бериллий найдет применение как конструкционный материал и в технике летательных аппаратов (в особенности ракет). Непреодолимым пока препятствием к использованию бериллия в качестве конструкционного материала является малая пластичность. Весьма характерной особенностью бериллия является анизотропность, возникающая как при литье и остывании, так и в результате механических деформаций. Интересно заметить, что при комнатной температуре и при 700 С материал в отношении каждой из характеристик, 6 и гр, практически изотропен. При промежуточных же температурах различие в величинах каждой из упомянутых характеристик для двух разных лаправлений, проходящих через точку тела, максимально и достигает 400 и 200% соответственно, т. е. материал существенно анизотропен. Механические харак теристики бериллия в значительной мере зависят от способа получения полуфабрикатов его. Так, например, Оп, (в продольном направлении) колеблется между 65 и 28 кПмм первое число относится к полуфабрикатам, получаемым тепловым выдавливанием при 400—500 °С, второе — к выдавленному слитку.  [c.327]


Опишем алгоритм расчета характеристик сервиса манипулятора, включающего пять подвижных звеньев и шесть вращательных кинематических пар, структурная схема которого показана на рис. 1. Оси пар IIi и совпадают с осями стойки и захвата манипулятора, а оси пар К , К , Z4 перпендикулярны продольным осям соединяемых ими звеньев. Оси пар и во всех конфигурациях манипулятора параллельны, так что точки С , j, С3 и С4 лежат в одной плоскости Q, проходящей через ось Z неподвижной системы координат Oxyz, связанной со стойкой. Ось пары 4 лежит в плоскости Q, и, значит, плоскость S, проходящая через точки Сд, и g, перпендикулярна Q.  [c.77]

Изложенный алгоритм лег в основу программы расчета характеристик манипулятивности. В ней предусматривался последовательный перебор точек, лежащих в плоскости xOz, и вычисление указанных характеристик в каждой из этих точек это вычисление осуществлялось перебором заданной совокупности углов а, Р ориентации захвата с определением реализуемости каждой из этих ориентаций. Чтобы проверить реализуемость фиксированной ори-  [c.79]

ЛИЯ, устройство для захвата упаковочного материала и изделия, элементы, н епоср едствен н о осуществляющие транспортирование или другие манипуляции, а также сменные зубчатые колеса, определяющие такт работы автомата. Упаковочные автоматы созданы для подшипников, клапанов, поршневых пальцев, гильз и некоторых других деталей. Технические характеристики упаковочных автоматов приведены в табл. 19, Для упаковки нескольких карданных или шариковых подшипников применен автомат 6У08 (рис. 56, а) с горизонтальным расположением изделий при упаковке. Изделия перемещаются в автомате цепным конвейером периодического действия. На звеньях конвейера смонтированы самоцентрирующие подпружиненные захваты /, в которые на позиции загрузки укладывается пакет изделий на предварительно поданный лист бумаги, отрезанный от рулона. При транспортировании изделий на первую рабочую позицию захват закрывается, прижимая бумагу к изделию. С обеих сторон конвейера уста-  [c.470]

Автоматизация измерения деформаций образца требует стабильности его расположения в пространстве, для чего должна быть строго зафиксирована. траектория движения активного захвата. Это достигается заключением захватной траверсы в направля ощне или переходом на жесткую в поперечном направлении систему нагружения, например на дифференциальные ги-дроцилиндры, расположенные в верхней или нижней части (см. рис. 3, г) силовой рамы. В табл. 13 приведены технические характеристики машин зарубежного производства с дифференциальным цилиндром.  [c.86]

Наибольшая амплитуда пере-меи ения активного захвата, мм 2 Диапазон рабочих частот, Гц 40 — 230 Характеристики силоизмери-телей  [c.120]

В табл. 1 приведены технические характеристики маятниковых копров. В копрах с тяжелыми маятниками, имеющими большой запас энергии (150 Дж, 300 Дж), автоматизированы процессы подъема, спуска и захвата маятника. Для этого используют электромеханический или пневматический привод и исполнительные механизмы, управляемые электромагнитами. Для испытания образцов различных материалов при пониженных и повышенных температурах копры оснащены термокриокамерами, предназначенными для испытания пластмасс при температуре от —90 до +300°С и испытания металлических образцов при изменении температуры от —90 до - -1100°С. С целью обеспечения воспроизводимости условий испытаний и получения достоверных результатов в копрах может быть автоматизирован процесс доставки образцов из термостатирующих камер на опоры копра. Специальные кассеты позволяют осуществлять одновременный нагрев нескольких образцов (десяти и более), обеспечивая необходимые температурные условия.  [c.96]


Смотреть страницы где упоминается термин Захваты характеристика : [c.158]    [c.656]    [c.176]    [c.227]    [c.87]    [c.107]   
Справочник машиностроителя Том 3 (1951) -- [ c.1028 ]



ПОИСК



К-Захват



© 2025 Mash-xxl.info Реклама на сайте