Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность Влияние качества обработки поверхности

При расчете на прочность влияние качества обработки поверхности учитывается фактором поверхности Вп, этот коэффициент равен отношению предела выносливости образца, поверхность которого обработана так же, как у рассчитываемой детали, к пределу выносливости образца со шлифованной поверхностью.  [c.265]

Проводимость 107 Прочность при переменных напряжениях — Влияние качества обработки поверхности 265  [c.761]

Влияние качества обработки поверхностей деталей. При статических нагрузках качество обработки рабочих поверхностей деталей оказывает незначительное влияние на их прочность. При циклических нагрузках разрушение деталей связано с развитием усталостных трещин, возникающих в поверхностном слое. Развитию этих трещин способствует возникшая в результате механической обработки детали шероховатость поверхности в виде рисок, царапин, следов резца и т. п., которые являются концентраторами напряжений. С увеличением шероховатости поверхности предел выносливости снижается, что учитывается коэффициентом влияния шероховатости поверхности Ki , представляющим собой отношение предела выносливости образца с данной шероховатостью поверхности к пределу  [c.23]


Для характеристики влияния качества обработки поверхности на сопротивление усталости на рис. 3.39 показаны экспериментально найденные кривые, характеризующие снижение предела выносливости образцов, имеющих различное качество обработки поверхности [51 ]. По оси абсцисс на графике отложен предел прочности стали а , по оси ординат — коэффициент характеризующий влияние качества обработки поверхности на предел выносливости и равный отношению  [c.117]

Зарождение усталостной трещины начинается с поверхности вследствие того, что. на поверхности возникают наибольшие напряжения при изгибе, кручении,, при наличии концентрации напряжений и различных дефектов поверхности. Поэтому качество обработки поверхности оказывает очень сильное влияние на сопротивление усталости. На рис. 39 показаны экспериментально найденные кривые, характеризующие изменение предела выносливости образцов вследствие различного качества обработки поверхности. Ио оси абсцисс на этом графике отложен предел прочности стали а , по оси ординат — коэффициент р, характеризующий влияние качества обработки поверхности на предел выносливости  [c.145]

При азотировании поверхностей коленчатых валов, изготовленных из легированных сталей, пределы выносливости их также повышаются при изгибе на 30—60% и при кручении на 30—40%. Влияние концентрации напряжений и качества обработки поверхностей на прочность при этом снижается. Однако при недостаточно качественной механической обработке после азотирования элементов коленчатого вала усталостная прочность вала вследствие образования микроскопических трещин и местных ожогов может снизиться на 20—30%. Сверление масляных отверстий после азотирования может также значительно понизить предел выносливости при кручении.  [c.228]

Влияние на усталостную прочность детали ее формы, размеров и качества обработки поверхности учитывают следующими величинами  [c.201]

Усиление сварного шва и качество обработки поверхности шва. Изучение усталостных разрушений поперечных стыковых соединений показывает, что геометрическая форма усиления сварного шва оказывает существенное влияние на сопротивление усталости. Если в стыковом соединении углеродистой стали не имеется значительных дефектов, то при удалении усиления сварного шва можно ожидать повышения предела выносливости соединения, что подтверждается большинством испытаний. Однако количественное значение повышения прочности при удалении усиления зависит от качества сварки.  [c.143]


Если учитывать влияние концентрации напряжений, размера детали и качества обработки поверхности, то выражения запасов прочности по текучести для нормальных п касательных напряжений будут иметь вид  [c.380]

Качество сварных соединений проверяли механическими испытаниями на растяжение, сдвиг и кручение. Оптимальным режимом сварки образцов оказался следующий Т = = 1273 К, Р = 19,6 МПа, t = 5 мин, Рв = 6,5 10- Па. Образцы, сваренные по этому режиму, разрушались по стали 45. Однако общая деформация сваренных по этому режиму образцов составляла 5—5,5%, что недопустимо для готовых изделий (пуансонов и модулей пневмоники). С целью возможности уменьшения степени деформации было исследовано влияние подготовки поверхности перед сваркой на прочность сварного соединения сталей Р18 и 45 (рис. 8). Повышение качества обработки поверхности до 0,16 мкм позво-  [c.134]

Шероховатое г ь. Значения коэффициента влияния шероховатости поверхности приведены в табл. 16.7. С повышением прочности стали растут требования к микрогеометрии поверхности. При грубой обработке поверхности предел выносливости высокопрочных сталей оказывается не выше, чем у обычных среднеуглеродистых сталей. Особенно чувствительны к качеству поверхности титановые сплавы.  [c.327]

Расчет допускаемых напряжений связан с учетом ряда факторов, влияющих на прочность деталей, которыми являются форма детали (фактор или PJ, качество обработки и состояние поверхности k . Состояние поверхности при статическом нагружении не оказывает существенного влияния на изменение прочности. Любое повреждение поверхности вызывает появление концентрации напряжений и при циклически изменяющемся напряжении существенно снижает предел выносливости. Повышение коэффициента k (kn 5> 1) достигается применением различного вида упрочнений.  [c.250]

На прочность соединения кроме величины натяга большое влияние оказывает качество обработки сопрягаемых поверхностей. В процессе запрессовки неровности поверхностей (гребешки) частично деформируются, в результате чего уменьшаются действительный (технологический) натяг и прочность соединения. Для того чтобы создать необходимую прочность соединения, расчетный натяг увеличивают на некоторую величину и и принимают  [c.459]

Гальванические покрытия и поверхностная химико-термическая обработка. Гальванические покрытия, как правило, резко снижают усталостную прочность титановых сплавов [173, 177] (табл. 35). Наибольшее снижение усталостной прочности при нанесении гальванических покрытий наблюдается, когда в качестве подготовки поверхности применяют кислотное травление, само по себе отрицательно влияющее на усталостную прочность. Применение перед химическим или электрохимическим методами покрытия других видов предварительной подготовки поверхности, например гидропескоструйной, заметно снижает неблагоприятное влияние гальванических покрытий на прочность. Из данных табл. 35 следует также, что некоторые виды ЭХО и химической обработки мало влияют на усталость (анодное окисление, кадмирование и сульфидирование).  [c.183]

Прочность деталей машин, работающих при большом числе перемен нагрузок, в значительной степени зависит от состояния поверхностных слоев. Усталостная трещина возникает на поверхности детали, где действуют наибольшие напряжения при изгибе, кручении. Дефекты поверхности в виде рисок от прохождения режущей кромки при обработке, неравномерности структуры, остаточных напряжений и неравномерности физико-меха-нических свойств подповерхностного слоя способствуют возникновению очагов концентрации напряжений, что приводит при некоторых методах обработки к резкому снижению предела выносливости (рис. 133). На рис. 133 по оси ординат отложены значения коэффициента р, характеризующего влияние метода обработки (качества поверхности) на предел выносливости в зависимости от предела прочности  [c.402]


Состояние поверхностей соприкосновения. Влияние состояния поверхностей соприкосновения трубы и очка на качество вальцовочного соединения очень велико. Чем грубее обработка поверхностей, тем больше прочность соединения благодаря повышенным коэффициентам трения н тем ниже плотность соединения вследствие трудности заполнения текущим металлом трубы неров ностей грубо обработанных поверхностей.  [c.180]

Передний угол у измеряют в главной секущей плоскости между передней поверхностью и основной плоскостью Р . Он оказывает большое влияние на процесс резания. С увеличением у уменьшается работа, затрачиваемая на процесс резания, улучшаются условия схода стружки и повышается качество обработанной поверхности. Но увеличение переднего угла приводит к снижению прочности резца и ускоренному его изнашиванию вследствие выкрашивания режущей кромки и уменьшения теплоотвода. Различают углы положительные (+у), отрицательные и равные нулю. При обработке твердых и хрупких материалов применяют небольшие передние углы, мягких и вязких материалов — углы увеличивают. При обработке закаленных сталей твердосплавным инструментом или при прерывистом резании для увеличения прочности лезвия назначают отрицательные углы у. В зависимости от механических свойств обрабатываемого материала, материала инструмента и режимов резания углы у назначают от -10° до +20°.  [c.447]

На прочность соединений с натягом существенное влияние оказывает величина коэффициента трения (табл. 6). К качеству обработки сопрягаемых поверхностей предъявляются требования как по шероховатости, волнистости, так и по точности формы. Класс шероховатости поверхности с учетом экономически достижимой должен быть б—8 для валов и 5—7 для отверстий. Чем меньше номинальный диаметр соединения, тем выше должен быть класс шероховатости поверхности. Для посадок первого класса шероховатость нужно назначать на класс выше.  [c.295]

Число зубьев. Выбор числа зубьев фрезы оказывает влияние на процесс резания. С увеличением числа зубьев при всех прочих равных условиях работа резания и выделение тепла увеличиваются, при этом значительная доля работы затрачивается на размельчение стружки. Это вызывает снижение стойкости, а следовательно, и скорости резания. При выборе числа зубьев необходимо руководствоваться также и требованиями, предъявляемыми к конструкции фрезы. Для фрез с большим количеством зубьев трудно обеспечить достаточное пространство для размещения стружки, что может привести к загромождению и спрессовыванию ее во впадинах между зубьями. Из-за большого числа зубьев фрезы допускают меньшее количество переточек. Изготовление и эксплуатация их дороже. Форма зубьев при большом их количестве не может быть принята оптимальной (с точки зрения прочности, количества переточек размещения стружки и т. п.). Фрезы с мелкими зубьями применяются в основном для окончательной обработки, т. е. для снятия тонкого слоя металла. За последнее время имеется тенденция совершенно отказаться от применения фрез с мелкими зубьями и добиваться получения необходимого качества обрабатываемой поверхности другими путями.  [c.279]

Значения 3 при изгибе в связи с влиянием на усталость качества механической обработки поверхности даны на фиг. 61 в зависимости от предела прочности вд. Значения при изгибе в связи с влиянием переменных напряжений на усталость после коррозии в воде даны на фиг. 62 для стали и на фиг. 63 для алюминиевых сплавов в зависимости от предела прочности Сд. Значения при изгибе для усталости в условиях одновременного действия коррозии и переменных напряжений даны на фиг. 64 для стали, на фиг. 65 — для чугуна.  [c.364]

Заключительной операцией подготовки поверхности деталей является активирование металла, от которого во многом зависит качество покрытий. Химическая или анодная обработка растворяет, а катодная — восстанавливает тонкие пленки оксидов, которые могут препятствовать прочной связи покрытия с основой. Благоприятное влияние такой обработки очевидно. Однако, как сказано выше, ряд работ указывает на то, что, в отличие от таких неоднородных, нерегулярных пленок, после их удаления и формирования на поверхности металла более однородной и равномерной пленки определенной пористости можно наносить покрытия, достигая высокой прочности сцепления его с основой.  [c.60]

Связка. При выборе связки алмазных кругов (табл. 25) следует учитывать требуемую производительность при заданных шероховатости поверхности и качестве поверхностных слоев. Она не только удерживает режущие зерна в рабочем слое инструмента, но и влияет на производительность обработки и качество заточенных поверхностей, оказывает полирующее действие, снижает коэффициент трения и адгезию с обрабатываемыми поверхностями, обеспечивает работу инструмента в режиме самозатачивания, обусловливает прочность, жесткость и износостойкость рабочего слоя круга, участвует в образовании и отводе тепла из зоны обработки. Существенное влияние оказывает наполнитель, который в одних случаях приводит к повышению прочности, твердости и износостойкости связки, в других — к интенсификации процесса резания, в третьих — к улучшению теплоотвода в круг. Общий объем алмазного шлифпорошка (микропорошка) и наполнителя составляет 50 /о объема рабочего слоя круга. Алмазные круги изготовляются на органических (О), металлических (М) и керамических (К) связках. Органическая связка обеспечивает хорошее самозатачивание круга при его работе, она достаточно прочная и вязкая, но имеет сравнительно небольшую жесткость поэтому круги на органической связке изготавливают чаще всего с наполнителем, в качестве которого используют абразивные шлифпорошки (карбид, бора, карбид кремния, электрокорунд).  [c.31]


В монографии И. В. Кудрявцева, М. М. Саверина, А. В. Рябченкова [45] даны некоторые теоретические обоснования влияния качества поверхностных слоев на усталостную прочность деталей. Полученные результаты могут помочь технологам выбрать оптимальные режимы обработки деталей, позволяют улучшить контроль качества их поверхности и указывают пути дальнейших исследований в этой области. Однако в настоящее время еще отсутствует возможность отразить все параметры, характеризующие качество поверхностных слоев в расчетных формулах.  [c.655]

Физическая сущность процесса обработки резанием состоит в механическом разрушении наружного слоя материала, прилегающего к обрабатываемой поверхности заготовки. В основе процесса резания лежит деформация разрушения поверхностного слоя под воздействием внешних сил — сил резания. Процесс резания сопровождается выделением тепла и другими явлениями, оказывающими влияние на качество обработанной поверхности и слоев материала, прилегающих к ней. Формообразование деталей резанием производится на металлорежущих станках режущим инструментом, твердость и механическая прочность которого значительно больше, чем у обрабатываемого материала.  [c.210]

Чтобы повысить усталостную прочность, внутреннюю и наружную поверхности рубашки в средней ее части обкатывают роликами. Такую же обработку выполняют на цилиндрических поверхностях и сопрягаемых радиусах отверстий в рубашке под адаптеры. Для уменьшения коррозионного воздействия воды зону вокруг адаптерных отверстий покрывают специальным составом (трехслойное покрытие). В эксплуатации и при ремонтах необходимо следить за качеством покрытия и в случае нарушения восстанавливать его. На коррозионное воздействие основное влияние оказывает качество охлаждающей воды, которая должна содержать антикоррозионные присадки и приготавливаться строго в соответствии с руководством по эксплуатации.  [c.24]

Соединения, выполняемые контактной стыковой сваркой, обладают высокими механическими свойствами не только при статических, но и при переменных нагрузках. При сварке низкоуглеродистых и многих низколегированных сталей соединения имеют предел выносливости, близкий к пределу выносливости основного металла. Большое влияние на усталостную прочность оказывает качество провара стыка, а также состояние его поверхности. При грубой обработке поверхности предел выносливости меньше при гладкой, особенно полированной, — больше.  [c.143]

Вопрос о влиянии качества обработки поверхности на прочность паяных соединений является дискуссионным. По данным Колбуса и Мюллера, гладкая поверхность образцов обеспечивает более высокие механические свойства паяных соединений, чем шероховатая. И , еются сведения противоположного характера. По результатам некоторых советских исследователей, шероховатость поверхности и насечки, нанесенные на нее, способствуют повышению механических свойств паяных соединений,  [c.294]

Влияние качества обработки поверхности. Неровности, получающиеся после механической обработки поверхности, являются источниками кон-иентрации напряжений, существенно снижающей сопротивление усталости. В результате обработки резанием на поверхности образуется наклеп и возникают остаточные напряжения, значение и знак которых зависят от свойств металла и режимов резания. Наклеп поверхности и остаточные напряжения сжатия повышают сопротивление усталости, а остаточные растягивающие напряжения существенно снижают предел выносливости. В результате суммарного влияния этих факторов происходит снижение пределов выносливости с ухудшением качества обработки поверхности, тем более сильно выраженное, чем выше предел прочности стали. Снижение пределов выносливости оценивают ко-аффициентами влияния качества обработки поверхности на величину пределов выносливости Kfo Kfx при изгибе и кручении соответственно. Указанные коэффициенты зависят от предела прочности стали и локазателя шероховатости Rz (рис. 7)  [c.147]

При грубой обработке поверхности поверхностные дефекты снижают предел выносливости материала, На предел выносливости влияет также и технологический процесс механической обработки. Влияние качества обработки поверхности детали учитывается коэффициентом поверхностной чувствительности вц, равным отношению предела выносливости при симметричном цикле для образца с заданным состоянием поверхности к пределу выносливости такого же образца с тщательно полированной поверхностью. На рис. 11.17 представлены графики коэффициента Ед в зависимости от предела прочности стали. На этом графике / — зеркальное полирование 2 — грубое полирование 3 — тонкое шлифование или тонкая обточка 4 — грубое шлифование или грубая обточка 5 — испытание в пресной воде при наличии концентрации напряжен ний 6 — испытание в пресной воде при отсутствии конценграции и и э морской вода при наличии концентрации 7 — испытание в морской воде при отсутствии концентрации.  [c.240]

Рекомендации по выбору параметров шероховатости. Надежность а долговечность работы современных скоростных и высокоскоростных машин тесно связана не только с правильным выбором материала, конструктивных форм изделий и т. д., но и с качеством обработки поверхности изделий — шероховатостью поверхности. Шероховатость поверхности оказывает существенное влияние на целый ряд эксплуатационных показателей изделий, а именно на износоустойчивость, прочность по- садок, коррозеустойчивость, усталостную прочность.  [c.45]

Многочисленные исследования, Т1роведенные в Советском Союзе и за рубежом, показали, что качество обрабатываемых поверхностей, характеризующееся преимущественно шероховатостью, оказывает решающее влияние на прочность, долговечность и работоспособность изделия. Поэтому по мере развития методов обработки и объективных средств определения качества обрабатываемых поверхностей появилась необходимость в установлении однозначных обозначений с указанием основных параметров шероховатости поверхностей и правил их нанесения на чертежах.  [c.70]

Работами, проведенными разными исследователями, было установлено, что твердое хромирование приводит к уменьшению усталостной прочности и статической выносливости сталей [58]. Особенно значительно это влияние сказывается на механических свойствах сталей высокой прочности. Применение гидропеско-етруйной обработки уменьшает влияние твердого хромирования на механические свойства высокопрочных сталей, причем этот эффект тем заметнее, чем выше прочность стали. Было изучено влияние гидропескоструйной обработки на шероховатость поверхности деталей из стали ЭИ643, на качество хромового покрытия, защитные свойства и герметичность при испытаниях на течь .  [c.127]

В монографии освещены результаты исследований влияния процесса деформирующего протягивания на основные характеристики качества обработанной поверхности (шероховатость, степень и глубину упрочнения, структурные изменения, остаточные напряжения I рода) и эксплуатационные свойства деталей машин (износостойкость, усталостную прочность, склонность к газовыделению). Рассмотрены вопросы обрабатываемости сталей, упрочненных деформирующим протягиванием (взаимосвязь явлений в процессе резания, износ и стойкость режущего инструмента, качество поверхности после комбинированной деформирующе-режущей обработки). Даны практические рекомендации по использованию процесса деформирующего протягивания, а также по расчету и конструированию протяжек. Приведены результаты внедрения деформирующего протягивания при изготовлении деталей различных типоразмеров и показана высокая экономическая эффективность внедрения в производство.  [c.2]


Обработка отверстий деформирующими протяжками в деталях машин получает в последнее время все большее распространение в связи с применением для изготовления рабочих элементов протяжек металлокерамических твердых сплавов, обладаюш,их высокой износостойкостью, В процессе деформирующего протягивания могут осуществляться как малые (поверхностные), так и большие (сквозные) пластические деформации, при которых диаметр отверстия увеличивается на 10—20%. В последнем случае пластические деформации распространяются на всю толщину стенки детали и изменяют наряду с диаметром отверстия длину детали и ее наружный диаметр. Указанные деформации определяют лишь изменение размеров детали. В зоне контакта деформирующего инструмента с обраба тьшаемым металлом, кроме названных, возникают дополнительные сдвиговые деформации, величина которых может исчисляться сотнями процентов. Именно эти деформации формируют поверхностный слой, который определяет качество обработанной поверхности (шероховатость, упрочнение, остаточные напряжения, износостойкость, обрабатываемость и т. д.). При значительных деформациях могут возникнуть нарушения сплошности, надрывы, разрушения и другие явления, нежелательные с точки зрения прочности и износостойкости деталей. В связи с этим нужно иметь сведения о влиянии различных факторов режима деформирующего протягивания на качество поверхностного слоя обработанных деталей. Систематизированных сведений по этим вопросам почти нет.  [c.3]

Соединения, выполняемые контактной стыковой сваркой, обладают высокими механическими свойствами не только при статических, но и усталостных нагрузках. При сварке малоуглеродистых и многих низколегированных сталей соединения сваренные контактным стыковым способом, имеют предел выносливости, разный пределу выносливости основного металла. Например, для соединений малоуглеродистых сталей, испытываемых при симметричном цикле (г= —1), предел выносливости достигает 16- 19 кГ1мм . Большое влияние на усталостную прочность оказывает качество провара стыка, а также состояние его поверхности. При грубой обработке поверхности предел выносливости меньше при гладкой и особенно полированной больше. Стыковые соединения, сваренные контактным способом, почти не обладают концентрацией напряжений и поэтому рациональны.  [c.231]

Существуют три типа трения "граничное", тонксшеночное " и "гидродинамическое. Различие между ними - в количестве смазочного материала между двумя трущимися поверхностями и его влиянием на проиесс смазывания. Все три разновидности можно обнаружить между одними и теми же узлами при различных скоростях и нагрузках. Качество смазывания зависит от вязкости смазочного материала, чистоты обработки поверхности (или шероховатости) сопряженных поверхностей и способности молекул смазочного материала удерживаться в сопряженных поверхностях (известной как "прочность пленки").  [c.111]


Смотреть страницы где упоминается термин Прочность Влияние качества обработки поверхности : [c.498]    [c.407]    [c.250]    [c.212]    [c.146]    [c.158]    [c.175]    [c.458]    [c.154]    [c.322]    [c.52]    [c.289]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.265 ]



ПОИСК



Влияние качества обработки поверхности

Влияние качества поверхности

Влияние обработки

Обработка Качество поверхности

Обработка поверхности

Поверхности — Качество

Поверхность влияния

Прочность при переменных напряжениях — Влияние качества обработки поверхности



© 2025 Mash-xxl.info Реклама на сайте