Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо ионное легирование

Рис. 24.1. Влияние концентрации ионов меди и железа и легирования палладием ( ) или платиной ( ) на скорость коррозии титана в кипящем 10 % растворе НС1 Рис. 24.1. Влияние <a href="/info/107078">концентрации ионов</a> меди и железа и легирования палладием ( ) или платиной ( ) на <a href="/info/39683">скорость коррозии</a> титана в кипящем 10 % растворе НС1

При сравнении электрохимического поведения сплавов системы Fe- r, полученных объемным легированием и ионной имплантацией, установлено соответствие между дозами ионного легирования хромом и содержанием хрома в железе и показано, что доза 5 10 нон/см при ионном легировании железа хромом соответствует электрохимическому поведению объемно-легированного сплава с 4,9 % Сг, а доза 2 10 ион/см - поведению сплавов, содержащих более 13 % Сг.  [c.74]

Однако при ионном легировании железа хромом смещение потен-1 иала питтингообразования в положительном направлении меньше, чем при соответствующем объемном легировании, т.е. меньше стойкость к питтинговой коррозии.  [c.74]

В отсутствие хлорид-анионов при ионном легировании железа хромом получается легированный металл, для которого плотность критического тока пассивации в 30 раз меньше, плотность тока в пассивном состоянии примерно в 10 раз меньше, чем для нелегированного железа, что, естественно, ведет к увеличению стойкости первого к общей коррозии. Аналогичное действие на железо и сталь оказывает имплантация фосфора.  [c.131]

Ионное легирование железа никелем с увеличением его коп-центрации значительно уменьшает плотность критического тока пассивации металла и плотность тока в его пассивном состоянии, а также смещает потенциал пробоя в область положительных значений. При обеспечении 25 /о-ной концентрации никеля в железе область активного растворения практически отсутствует.  [c.131]

Ионное легирование железа алюминием более эффективно чем хромом и никелем при равных концентрациях легирующих компонентов. При ионной имплантации алюминием образуется поверхностный сплав Fe, 6,6% А1, склонный к самопассивации и более стойкий к локальным формам коррозии, чем сплавы Fe, 6,6% Сг и Fe, 6,6% Ni, полученные также методом ионной имплантации.  [c.132]

Ионное легирование железа и стали медью практически не-влияет на коррозионную стойкость металла.  [c.132]

Методом ионной имплантации можно получать поверхностные сплавы железа с танталом и свинцом. Ионное легирование-танталом при дозах 5-10 моль/см значительно снижает плотность критического тока пассивации железа и плотность тока в его пассивном состоянии. Коррозионное поведение такого сплава подобно поведению сплава Fe, 4,9% Сг.  [c.132]

Поверхностное легирование железа ионами бора (с энергией 5 кэВ) и ионами азота (с энергией 30 кэВ) дает возможность получать металл, стойкий в кислой среде благодаря высокой защитной способности поверхностного слоя.  [c.132]


Для увеличения износостойкости в коррозионной среде особое значение приобретает возможность получать в поверхностном слое метастабильные соединения со специфичными свойствами и осуществлять экономное легирование дорогими и дефицитными элементами. При использовании ионной имплантации для повышения коррозионной прочности сравнительно небольшие энергии и дозы легирования могут оказаться достаточными для получения ощутимых результатов. Легирования железа ионами Ni с энергией 25 кэВ до дозы  [c.97]

К заметному увеличению микротвердости карбонитридного покрытия приводит обработка высокоэнергетическими ионами поверхности материала основы перед нанесением покрытия. Так, предварительное легирование образцов армко-железа ионами В с энергией 12-10 Дж позволило получить карбо-нитридные покрытия с микротвердостью на 40% выше, чем у образцов, не прошедших предварительной ионной обработки. К аналогичным результатам повышения микротвердости приводит и легирование ионами Аг" с энергией 1-10 " Дж. Следует также отметить, что на общий эффект возрастания микротвердости существенно влияет время приводимой предварительно ионной очистки, оптимальное значение которого порядка 60 с.  [c.150]

Ускорение диффузии при ионном азотировании, так же, как и при ионном легировании кремния [91 ], видимо, связано с действием указанных ниже основных факторов, возникающих в результате ионной бомбардировки насыщаемой поверхности. Происходит локальный перегрев очень тонкого поверхностного слоя, в результате чего возникает температурный градиент. Если энергию, получаемую за счет ионной бомбардировки, преобразовать в тепловую, то она будет соответствовать крайне высокой температуре. В первые минуты насыщения в результате внедрения ионов азота в насыщаемую поверхность возникает высокий градиент концентрации. Это подтверждается сравнительным спектральным исследованием поверхности образцов технического железа [16]. На бомбардируемой поверхности образуется большое количество дефектов кристаллической решетки и градиент их в направлении  [c.123]

Гидрат окиси трехвалентного железа очень трудно растворим. Поэтому на нелегированных и легированных черных металлах защитные поверхностные слои могут образоваться только при достаточном подводе кислорода. Участки, не обдуваемые воздухом, не имеют поверхностного защитного слоя и поэтому остаются активными. Это и является причиной часто наблюдаемого на таких материалах образования так называемых аэрационных элементов. На аноде образуются ионы Ре +, но они реагируют по уравнению (4.3), образуя бугорки ржавчины только в среде с присутствием кислорода. В результате этого доступ кислорода к анодной поверхности предотвращается. На катоде со слоем покрытия беспрепятственно протекает реакция по уравнению (2.17) с образованием ионов 0Н . Затрудненная здесь анодная реакция дает лишь небольшое количество ионов Ре +, которые реагируют по уравнению (4.3) с другими компонентами О2 и ОН-, присутствующими в более значительных количествах, и упрочняют поверхностный слой (увеличивают его толщину). Для такого коррозионного элемента справедлива схема, показанная на рис. 2,6, причем силу тока элемента 1е здесь следует приравнять силе анодного частичного тока /а, о..  [c.133]

Однако в морской воде невозможно сохранить в пассивном состоянии углеродистые, легированные конструкционные стали, а также некоторые коррозионностойкие стали из-за присутствия в морской воде значительного количества хлорид- и сульфат-ионов, которые разрушают защитные оксидные пленки и образуют комплексы с ионами железа, активизируя анодный процесс электрохимической коррозии.  [c.37]

Относительное влияние pH и ионов фосфата на коррозию алюминиевого сплава, легированного 1% никеля и 0,6% железа при температуре 290° С  [c.192]

При перегреве легированной стали или недостатке легирующих элементов (хрома, алюминия и кремния) образуются в большом количестве пористые окислы железа, что способствует усиленной диффузии ионов металла и кислорода и усиленному окислению.  [c.644]

Ионы железа (П1) или меди (И), присутствующие в растворе, сильно повышают коррозионный потенциал легированных сталей— сталь становится пассивной. Содержание кислорода в растворе при этом не столь важно (рис. 1.85). Действие пассивации основано на адсорбции, и увеличение потенциала зависит от концентрации пассиватора и подчинено изотерме Лэнгмюра [56].  [c.93]


Ионное легирование зависит от природы легирующих элементов. Так, имплантация инертных газов практически не оказывает влияния на электрохимическое поведение основного металла, за исключением того, что процесс ионной имплантации может приводить к загрубению обраба-тьшаемой поверхности, утолщению воздушной окисной пленки на железе.  [c.73]

Ионное легирование железа никелем с увеличением концентрации никеля резко уменьшает предельную плотность тока пассивации и плотность тока полной пассивахщи, а также смещает потенциалы питтингообразования и перепассивации к более положительным значениям. При обеспечении 25 %-ной концентрации никеля в поверхности ионно-легированного железа область активного растворения практически отсутствует, например, в боратном буферном растворе, содержащем 2400 мг/л хлор-ионов, при pH = 8,5.  [c.74]

Имеются экспериментальные подтверждения положительного влияния на способность железа к пассивации ионного легирования титаном и кремнием. Ионная имплантация этих элементов при дозах легирования от 0,1 до 1 10 ион/см , энергии 500 кэВ и температуре подложки от 293 до 453 К обеспечивала максимальную концентращю имплантированного элемента на уровне 20 %. При таком содержании титана или кремния в поверхностно-легированном железе резко уменьшается плотность тока пассивации в 0,5 М растворе СН3СООН + СНзСООЫа при pH = 5,0 и температуре 298 К. С увеличением числа циклов вольтамперометрии уменьшается различие в электрохимическом поведении чистого железа и железа, поверхностно легированного этими элементами, а после 42 циклов это различие в их поведении практически отсутствует.  [c.74]

Эффект ионного легирования железа никелем сводится н. основном к уменьшению тока анодного растворения и к увеличению потенциала питтингообразования, причем степе1НЪ облагораживания этого потенциала больше, чем в результате имплантации хрома. Введение хрома в мартенситно-старею-щую сталь приводит к уменьшению анодного растворения и увеличению стойкости к питтинговой коррозии. Тройной сплав железо-хром-никель, полученный методом ионной имплантации,, обладает более высокой стойкостью к питтинговой коррозииу чем большинство поверхностно-легированных двухкомпонент-ных сплавов. В общем, хотя стойкость к общей коррозии у поверхностно-легированных хромом и никелем сплавов железа сравнима со стойкостью объемно-легированных, стойкость к питтинговой коррозии у поверхностно-легированных сплавов выше, чем у железа, но ниже, чем у объемно-легированных сплавов близкого состава.  [c.133]

Повышение стойкости железа к окислению при легировании хромом или алюминием происходит, вероятно, в результате значительного обогащения наружного слоя оксидной пленки легирующими компонентами. В сплавах Fe—Сг, как показали химический и электронномикроскопический анализы, средний слой оксидных пленок обогащен хромом, а внутренний, прилегающий к металлу, — хромом [56, 57]. Этот внутренний слой оксида в большей степени, чем FeO, препятствует миграции ионов и электронов. Обогащение оксидной пленки хромом в Сг—Fe-сплавах сопровождается обеднением поверхностного слря сплава, находящегося непосредственно под окалиной. Этим объясняется  [c.204]

Дрейли и Разер 2, 8] объясняют наблюдаемые факты тем, что выделяющийся на поверхности раздела металл—оксид газообразный водород разрушает защитную оксидную пленку. Если алюминий контактирует с более электроотрицательным металлом либо легирован никелем или железом, то можно предполагать, что ионы Н+ разряжаются на катодных участках, а не на алюминии, и оксидная пленка остается неповрежденной. Однако полезное действие катодных участков можно также объяснить [91 анодной пассивацией или катодной защитой алюминия. Это влияние сходно с действием легирующих добавок платины и палладия (или контакта с ними) на нержавеющую сталь аналогичным образом эти металлы пассивируют также титан в кислотах (см. разд. 5.4).  [c.344]

При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы.  [c.362]

Имплантация ионов Nb с энергией 30 кэВ при дозах 5 10 и 5 -10 ион/см в поверхность стали марки Х18Н9Т позволила получить легированный поверхностный сплав на глубине 20 нм. Увеличение концентрации ниобия не меняет относительного содержания железа, хрома и никеля в поверхностном слое стали, но существенно повышает его коррозионную стойкость в 20 %-ной серной кислоте после предварительной катодной обработки в течение 15 мин, смещая потенциал коррозии в положительную сторону. Однако максимальная концентрация ниобия в стали марки Х18Н9Т при этом ограничена 20 % в связи с распылением поверхности при дозе 5 10 ион/см .  [c.76]

Наилучший защитный эффект наблюдался при добавлении в воду 30 мг л метасиликата натрия при pH 3,6. При добавлении бихромата натрия скорость коррозии алюминия увеличивалась. К. М. Карлсен [111,173] считает, что хромат натрия при высоких температурах является деполяризатором. Именно по этой причине с присутствием его в воде скорость коррозии алюминия увеличивается. Защитным действием обладает смесь 0,5% бихромата кали и 0,5% силиката натрия [111,170 111,173 111,196], хотя каждый из них в отдельности в количестве 1 % вызывает значительную язвенную коррозию алюминия [111,173]. По данным других авторов [111,183], введение в воду 500 мг л кремниевой кислоты снижает скорость коррозии алюминия в пять раз, а наличие в ней окиси мыщьяка вызывает появление язв на его поверхности. Пирогалл-значительно ослабляет агрессивное действие среды [111,170]. Следует также отметить, что если при высокой температуре метасиликат натрия оказывает защитное действие только в кислой среде, то при температуре 40° С в воде с pH 11с добавлением небольшого количества метасиликата натрия коррозия алюминия прекращается [111,197]. Из табл. 111-32 видно, как влияет кремниевая кислота на коррозионное поведение сплава алюминия 155 с концентрацией 0,49% никеля, 0,5% железа и 0,22% кремния [111,177]. Растворенная в воде кремниевая кислота действует в нейтральной среде как ингибитор более эффективный, чем ионы фосфата. При снижении температуры вода, содержащая кремниевую кислоту, слегка подкисляется. Оптимальная концентрация ее 0,3—1,0 г/л. Введение при температуре 92° С в воду 100 мг л фосфата несколько замедляет коррозионный процесс [111,192]. В растворе фосфорной кислоты с pH 3,5 скорость коррозии сплава алюминия, легированного 1% никеля и 0,6% железа, была менее 0,1 мг1дм суш. Экспе-  [c.191]


Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]

Железо, никель и в меньшей степени хром увеличивают коррозионную стойкость циркония, задерживая наступление стадии ускоренной коррозии как в воде, так и в паре. В том случае, когда цирконий загрязнен азотом, углеродом или другими вредными примесями, железо, никель и хром сообщают ему меньшую коррозионную стойкость, чем олово. Максимальная коррозионная стойкость достигается при добавлении в сплав 0,25% железа и никеля (в сумме) [111,231 111,243]. Увеличение суммарной концентрации этих элементов в сплаве свыше 0,5% приводит к ухудшению его коррозионной стойкости. В значительной степени стойкость сплавов, легированных железом и никелем, зависит от термообработки и структуры металла. Сплавы, легированные до 2% железом, никелем и хромом порознь или в сочетании друг с другом, имеют более высокую коррозионную стойкость в водяном паре при температуре 400— 815° С, чем кристаллический прутковый цирконий. Интересно отметить, что при введении в цирконий 0,1% никеля или железа и 0,5% платины коррозионные потери уменьшаются, но увеличивается количество водорода, выделившегося в процессе коррозии [111,228]. Последнее обстоятельство позволяет предполагать, что указанные легирующие компоненты действуют в данном случае как эффективные катодные присадки. Увеличение скорости катодного процесса при введении в цирконий этих металлов приводит к смещению стационарного потенциала в положительную сторону. При этом стационарный потенциал смещается в область пассивации и скорость коррозионного процесса соответственно уменьшается. По данным М. Е. Страуманиса [111,240], введение в плавиковую кислоту ионов платины приводит к пассивации циркония. Это еще раз подтверждает, что легирующие компоненты — железо и никель можно рассматривать как эффективные катодные присадки. Катодная поляризация смещает стационарный потенциал циркония и его сплавов в отрицательную сторону (в область активного растворения) и тем самым вызывает увеличение скорости коррозии [111,228]. В сплаве циркония, легированном 0,1% железа и 0,1% никеля, количество гидридов больше, чем в нелегированном. Следовательно, скорость катодного процесса разряда ионов водорода увеличивается при легировании циркония железом и никелем. Характер окисной пленки в этом случае, видимо, не является решающим в определении коррозионной стойкости циркония. Величина емкости при легировании циркония железом, никелем, оловом возрастает в 5—10 раз, в то время как скорость коррозии остается практически постоянной  [c.221]

Структура электронных спектров кристаллов при обычных условиях сильно размыта под действием тепловых колебаний атомов кристаллич. структуры, и в большинстве случаев наблюдаются широкие размытые спектральные полосы. При гелиевой темп-ре. можно наблюдать дискретные спектральные линии, к-рые возникают при прямых переходах между экситонными зонами, при переходах между дискретными уровнями электронов и дырок, локализованных на дефектах решётки, либо на акцепторных или донорных примесях в гомеополярных полупроводниках (см. Спектроскопия кристаллов). Помимо колебаний атомов на форму и ширину экситонных линий влияют тип связи в кристалле, его зонная структура и микроструктура экситонного возбуждения. В сильнолегир. полупроводниках ширина линии может зависеть от степени легирования. Дискретные линии наблюдаются и при комнатной темп-ре в поглощении и люминесценции кристаллов, содержащих ионы переходных металлов (хром, железо, палладий, платина и др.), лантанидов и трансурановых элементов, имеющих незаполненные d- и /-оболочки. В кристаллах высокого качества линии таких примесных ионов, напр, линия иона в рубине и линия в иттрий-алюминиевом  [c.263]

Легирующие элементы по-разному влияют на энергию взаимодействия примесей внедрения с дислокациями. Так, введение в решетку а-железа 3% никеля приводит к снижению энергии связи углерода с дислокациями с 0,5 до 0,2 эВ легирование же железа кремнием вызывает противоположный эффект. Неравномерное распределение ионов вокруг дислокации проявляется также и в неравномерном распределении электронов уплотненные участки решетки вокруг дислокации приобретают положительный заряд вследствие недостатка электронов в то же время области растяжения в связи с избытком электронов заряжаются отрицательно. Между положительным зарядом примесного иона и отрицательно заряженной областью дислокации возникают кулойовские силы притяжения, приводящие к перераспределению примесей. Энергия электрического (кулоновского) взаимодействия в металлах невелика (для двухвалентных примесей она составляет 0,02 эВ). Электрическое взаимодействие значительно слабее упругого, но вклад первого может стать существенным в случае отсутствия в твердом растворе упругого взаимодействия (т. е. при равенстве радиусов основного и примесного атомов), а также при их большой разнице в валентностях.  [c.148]


Введение ионов алюминия в железо (99 95%) при дозах облучения 1-10 —1,5-10 моль/см в кислородсодержащей атмосфере при температурах 720—1020 °С приводит к изменению-вида кинетических кривых окисления в сравнении с окислением чистого железа начальная стадия окисления легированного, железа описывается, как и для чистого железа, параболическим законом, но с меньшей константой скорости процесса. Однако по истечении некоторого промежутка времени, определяемого температурой и дозой облучения, скорость окисления (коррозии) резко уменьшается. Ощутимый защитный эффект от введения алюминия достигается при дозе около 5-10 моль/см . Замедление окисления в этом случае объясняется образованием стабильной шпинели FeAl204.  [c.132]

Ранее основное внимание уделялось обработке цифровых данных с голографической записью и последующим считыванием в непрерывно изменяемой фоточувствительной среде. Были продемонстрированы также некоторые логические операции между страницами данных без непрерывной голографической записи. Например, операция сравнения ИСКЛЮЧАЮЩЕЕ ИЛИ может быть осуществлена с использованием предварительно записанной постоянной голограммы на тестовой странице. Если искомая согласованная страница находится в составителе страниц и при этом фаза опорного пучка сдвинута на 180° по отношению к фазе при записи тестовой страницы, а амплитуды равны, то для прошедшей объектной волны можно получить нулевой результат (темный участок, или логический нуль). Этот принцип используется в интегрированном оптическом компараторе Баттелла (см., например, статью Кенана и др. [20]). В этом интегрированном оптическом приборе на основе ниобата лития две управляемые волны интерферируют в фоточувствительной области, легированной железом, в результате чего записывается, а затем фиксируется (из-за процессов миграции ионов) голограмма. Один из управляемых волновых фронтов уже претерпел дифракцию на распределении показателя преломления, созданном последовательностью поверхностных электродов. После того как записана и зафиксирована тестовая голограмма, на последовательность электродов можно наложить другой сигнал. При соответствующей амплитуде опорного пучка и сдвиге его фазы па 180° относительно фазы при записи нуль на выходе получается только при совпадении входного сигнала и сигнала, использованного при исходной записи. Применяя регистратор нуля, на выходе получим сигнал только в случае, когда исследуемые данные согласованы с предварительно записанным сигналом. На рис. 10 показана схема другого прибора такого типа. В этой системе канал двоичных данных непрерывно исследует сегменты т-битовых слов, которые путем осуществления операции ИСКЛЮЧАЮЩЕЕ ИЛИ сравниваются с п словами, заранее записанньшк на основной голограмме Фурье. Амплитуду опорного пучка необходимо все время регулировать в соответствии с пропусканием слова по ходу составителя страниц. Если слово на входе системы соответствует любому из записанных ранее слов, то на выходе появляется нуль для любых адресных положений этого слова в  [c.449]

Чувствительность к записи кристаллов, легированных Fe, определяется концентрацией ионов Fe " ", которые в решетке LiNbOj имеют широкую полосу поглощения с максимумом около 0,480 мкм. Предполагается, что при фотовозбуждении ион Fe + отдает фотоэлектрон в зону проводимости, затем в процессе диффузии этот электрон захватывается ионом Fe + в неосвещенной области. В полностью окисленном кристалле железо имеет валентное состояние Fe " ". Однако, как правило, в реальном кристалле присутствуют ионы Fe " ", содержание которых возрастает при увеличении концентрации легирующей добавки или  [c.322]

Минимальное количество ионов окисного железа, необходимое для ингибирования коррозии данной нержавеющей стали, может рассматриваться как мерило способности стали к пассивированию оно не связано со скоростью коррозии хметалла в активном состоянии. Если условий для образования защитной пленки не существует, то две нержавеющие стали различного состава могут характеризоваться одной и той же скоростью коррозии. Если же несколько изменить условия путем добавки ионов окисного железа, то сталь более легированная, будет реагировать быстрее, чем менее легированная, т. е. будет чувствительнее к меньшему содержанию ионов железа.  [c.178]

Производительность ЭХО существенно зависит от вида электролита, однако поиск оптимального по производительности электролита до сих пор представляет значительные трудности [211, 230]. Широко распространено мнение, что для углеродистых и легированных сталей максимальную производительность обеспечивают хлоридные электролиты, что объясняется [166] большим сродством железа к хлору, чем к кислороду, вследствие чего ионы хлора препятствуют образованию кислородного барьера , т. е. адсорбционного слоя кислорода и фазовых окислов на поверхности растворяющегося металла, являясь специфическими депассиваторами. Депассивирующее действие СГ-анионов зависит от их соотношения в растворе с пассивирующими анионами гидроокисла, уменьшаясь с увеличением содержания последних.  [c.41]

Применяемый в процессе синтеза 22% раствор гидросульфида натрия содержит около 3 вес.% МагЗ, 4 вес.% ЫагСОз и до 0,4 вес. % хлор-иона. Наиболее интенсивная коррозия углеродистых и низколегированных сталей наблюдается в паровой фазе. На поверхности металла образуется плотный черный слой сульфидов железа. Коррозия стали неравномерная, появляются отдельные раковины и углубления. Срок эксплуатации емкостей для хранения гидросульфида натрия не превышает 8 лет при толщине стенки Ъ мм. Поверхность емкостей, мерников и трубопроводов, проработавших в контакте с гидросульфидом натрия около 60 месяцев, покрывается обильным осадком сульфидов железа, который попадает во всю последующую аппаратуру. Поэтому, если последняя будет выполнена из легированных сталей, то емкости для исходного гидросульфида также должны быть выполнены из более коррозионностойких материалов. Для этой цели целесообразно использовать  [c.96]

Для появления сквозной коррозии необходимо одновременное наличие окислительной среды и вещества, которое разъедает окисные пленки или покрытия. В этом отношении очень активны ионы галогенов, за исключением фтора [40]. Для железа пороговое значение концентрации хлор-ионов составляет 3 10 г-ион/л [41,42]. При этой и более высоких концентрациях пассивный слой подвергается местным разрушениям. Окисление хромоникелевой стали в растворах хлоридов определяется значением редокс-потенциала ( + 0,15 в или выше). Эти значения достигаются либо при аэрации, либо в присутствии окислителей солей Fe (III), u (II) или НС10 и примерно соответствуют потенциалу пассивации легированных сталей [43]. Таким образом пассивное состояние является предпосылкой сквозной коррозии.  [c.19]

С НИМИ. При последующем нагреве происходят сложные процессы диффузии элементов сплава из его внутренних слоев к поверхности через окисную пленку, а также диффузия кислорода через окисную пленку в сплав. При окислении многих металлов превалирует процесс диффузии ионов металла через окисную пленку, в результате чего последняя наращивается на основном металле. В некоторых случаях преобладает процесс диффузии кислорода через окисную пленку внутрь металла, например при окислении титана при высоких температурах. Диффузионные процессы зависят от строения пленки, во многих случаях рыхлой, с незаполненными узлами кристаллической структуры (вакансиями), градиента концентрации легирующих элементов, а также термодинамических условий, способствующих приближению системы к равновесию. С окисленной поверхности чистого металла в глубь него образуются слои окислов с постепенно уменьшающимся содержанием связанного кислорода (РегОз, Рез04, РеО в железе Т10г, Т120з, ТЮ в титане и т. д.). Окисление легированных сплавов происходит более сложным образом.  [c.124]


Смотреть страницы где упоминается термин Железо ионное легирование : [c.74]    [c.95]    [c.66]    [c.254]    [c.72]    [c.69]    [c.194]    [c.220]    [c.229]    [c.219]    [c.133]    [c.324]    [c.163]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.131 ]



ПОИСК



Иониты

Ионов

Легирование

По ионная



© 2025 Mash-xxl.info Реклама на сайте