Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия сквозная

Точечная коррозия (рис. 125, д) также сосредоточена иа отдельных участках поверхности металла, но характер разрушения точечный, причем лти поражения могут перейти в сквозные.  [c.158]

Точечная коррозия наблюдается и при действии водопроводной воды. Например, при сравнении действия на алюминий куйбышевской и московской водопроводной воды, отличающихся содержанием 50з и связанного хлора (в первой 50з 460 г/ж , связанного хлора 44 г/ж , во второй соответственно 21 и 3,2). точечная коррозия в виде сквозных поражений глубиной до 1,4 мм  [c.162]


Для подземных трубопроводов стоимость катодной защиты намного ниже, чем при использовании любых других способов, обеспечивающих аналогичную степень защиты. Гарантия того, что в катодно защищенных подземных трубопроводах не происходит сквозных разрушений вследствие коррозии со стороны грунта, сделала экономически оправданным и применение высокого давления для транспортировки нефти и газа на большие расстояния, например через американский континент.  [c.228]

Нанесение капли ртути на поверхность алюминия приводит к быстрому нарушению пассивности, которое сопровождается образованием амальгамы. При наличии влаги амальгамированный металл быстро превращается в оксид алюминия, образуя в трубах и листовом алюминии сквозные отверстия. Даже следы ионов ртути в растворе усиливают коррозию, приводя к недопустимо высоким скоростям разрушения.  [c.346]

Сквозная язвенная коррозия и сероводородное растрескивание корпуса задвижки скважины № 10011, изготовленного из ферритно-перлитной стали с содержанием углерода до 0,25% (твердость 170 НВ), произошли после четырех лет эксплуатации в местах расположения в корпусе металлургических раковин и пор (диаметр последних достигал 9 мм (рис. 6в)).  [c.27]

Трубные пучки теплообменного оборудования выходят из строя вследствие забивки трубок солевыми отложениями и сквозной коррозии металла.  [c.47]

Общая коррозия протекает в условиях воздействия на металл агрессивных сред, содержащих Н28, СО2 или оба газа одновременно, и приводит к образованию язв, питтингов, сквозных свищей к утонению стенок труб и оборудования, а также к снижению их конструктивной прочности.  [c.172]

В результате образования аэрационных макропар, которые в трубопроводах возникают из-за осаждения песка, глины, продуктов коррозии, затрудняющих к этим участкам доступ кислорода, скорость развития местных коррозионных поражений достигает 0,2—5,0 мм год, через 6—8 мес в трубопроводах с толщиной стенки 5—8 мм появляются сквозные язвы.  [c.153]

Как следует из уравнения (8), удельное сопротивление почвы и общая площадь поверхности обнаженных участков трубопровода определяют плотность тока коррозии. Это уравнение поясняет также, почему после появления первой утечки коррозия трубопровода ускоряется продукты коррозии, как правило, снижают удельное сопротивление почвы. Кроме того, как только в трубопроводе возникает сквозное отверстие, площадь анодного участка в этом месте уменьщается и плотность коррозионного тока возрастает. ,  [c.45]

Стеклопластики обладают высокой коррозионной стойкостью. Некоторые связующие, используемые для их производства, также имеют хорошую коррозионную стойкость, часто превышающую стойкость лучших отделочных покрытий для металлов. Такие дефекты поверхности, как образование сквозных пор, отслаивание пленки покрытия, образование рыхлой пленки, не возникают при использовании стеклопластиков. Стекловолокнистый наполнитель также не подвергается коррозии и является инертным.  [c.399]


Во многих случаях материалы защищают от коррозии нанесением покрытий (см. раздел 5). Многие органические покрытия, особенно тонкослойные, становятся с течением времени в некоторой мере электрически проводящими с удельными сопротивлениями <10= Ом-м . В таком случае беспористая поверхность с покрытием площадью 10 м , что например, соответствует поверхности 10 км трубопровода с условным проходом 300 мм, должна иметь сопротивление покрытия Ом. Более высокие сопротивления и свойства, практически соответствующие свойствам электрической изоляции, имеют, например, полиэтиленовые покрытия толщиной 1 мм и более (см. раздел 5.2). Напротив, вышеназванные слабо проводящие покрытия ведут себя в отношении химической коррозии аналогично оксидным покрытиям. Анодная промежуточная реакция затормаживается почти полностью, а катодная — лишь в незначительной степени. Таким образом, эти поверхности с покрытием становятся катодами, и в местах пор или повреждений в покрытии может произойти интенсивная сквозная коррозия. В особенности этого следует ожидать при большом содержании солей в коррозионной среде [10, 111. Для предотвращения местной коррозии около дефектов покрытия, которых практически нельзя избежать, необходимо либо обеспечить возможно более высокое сопротивление покрытия, либо применить катодную защиту от коррозии.  [c.135]

Без учета влияния макроэлементов образования сквозного разрушения стенки подземных стальных трубопроводов при ее толщине 4 мм в грунтах класса III можно ожидать примерно через 10 лет, в грунтах класса II — через 16 лет и в грунтах класса I —через 30 лет. Образование коррозионного элемента с отношением площадей катода и анода 10 1 приводит к значительному увеличению глубины местной коррозии.  [c.143]

Трубопроводы для охлаждающей воды имеют важное значение для работы электростанций и их нормальное функционирование не должно нарушаться. Пожарные трубопроводы важны для обеспечения безопасности. Те и другие трубопроводы обычно имеют надежное изолирующее покрытие, но в местах неизбежного повреждения покрытия они подвергаются опасности язвенной (сквозной) коррозии вследствие образования коррозионного элемента со сталью в бетоне. На сравнительно тонкостенных пожарных трубопроводах такие дефекты действительно нередко наблюдаются уже после непродолжительной эксплуатации. Локальная катодная защита от коррозии предотвращает появление таких повреждений.  [c.290]

По этим данным видно, что электропроводность воды, например при заходе судна в Гамбургский порт, уменьшается в 40 раз. Соответственно уменьшается и дальность действия защитного тока, см. формулу (2.44). Кроме того, ввиду низкого содержания ионов Са2+ затрудняется образование катодных защитных слоев (см. раздел 4.1). После механического истирания это приводит к уменьшению сопротивления слоя покрытия или к увеличению потребляемого защитного тока, что согласно формуле (2.44) в свою очередь дополнительно уменьшает протяженность зоны защиты. Поэтому понятно, что в порту опасность коррозии повышается, поскольку к тому же при неподвижном судне действие коррозионных элементов более интенсивно, чем при движении (см. раздел 4.2) возможно возникновение сквозной (язвенной) коррозии.  [c.353]

Прибрежная акватория и в первую очередь застойные воды могут быть загрязнены сточными водами, которые иногда содержат ингибиторы или пассивирующие вещества, например фосфаты, а иногда восстановительные компоненты, например сульфиды и органические вещества. Такие среды обусловливают неполное ингибирование и анаэробную коррозию [8]. В обоих случаях происходит сквозное разъедание (образование язв). Сточные воды обычно содержат также соли аммония и амины, которые могут разъедать медные сплавы. Местная коррозия вследствие образования коррозионного элемента возможна главным образом в трубопроводах длительно простаивающих судов, если после пробного пуска эти трубопроводы не были опорожнены.  [c.353]

В некоторых случаях благодаря электрохимической защите удается сохранить старые сооружения, которые иначе пришлось бы обновлять (заменять новыми) вследствие коррозионных повреждений (образования раковин, сквозной или язвенной коррозии, образования коррозионных трещин и т.д.). В отдельных случаях электрохимическая защита вообще впервые сделала возможной эксплуатацию некоторых установок при использовании экономичных материалов.  [c.413]


На стальных конструкциях в морской воде и в грунте нередко наблюдается коррозия в виде раковин и язв (сквозная). В среднем скорость коррозии малых стальных образцов в глинистом грунте составляет около 0,2 мм/год, а в более кислых болотистых грунтах — около 0,3 мм/год. При больших площадях поверхности наибольшая скорость проникновения коррозии может быть и существенно более высокой (см. раздел 4). Язвенная и сквозная коррозия особенно легко  [c.413]

Заслуживает внимания случай коррозии (сквозная перфорация в шести местах) сварного трубопровода из нержавеющей стали типа Х18Н11Б в результате того, что дождевая вода, просачивающаяся в изоляцию из магнезии, извлекала из нее следы (0,06%) водорастворимых хлоридов. Подобная же коррозия отмечалась и на наружной поверхности ректификационной колонны, изготовленной из хромоникелемолибденовой стали и изолированной магнезиальной изоляцией. После того как эту изоляцию заменили на пеностекло с водонепроницаемым покрытием, коррозия прекратилась.  [c.158]

В Челябинске начиная с 1964 г. оцинкованные трубы широко применяются при новом жилищном строительстве . За 3 года экаплуатации (1964—1966) в этих системах, по данным теплосети г. Челябинска, не было случаев сквозной коррозии оцинкованных труб. Вместе с тем в ряде случаев имели место повреждения сварных стыков. Системы горячего водоснабжения г. Челябинска, выполненные из черных труб, подвергаются интенсивной внутренней коррозии сквозные свищи на трубах образуются через 8—12 мес. после начала эксплуатации.  [c.39]

Особенностью подземной коррозии является проявление ее в виде язв, каверн, а часто в виде сквозного проржавления.. Этим об1)1чно объясняется, что опасность подземной коррозии (щепипается не коррозионной потерей металла, а возможностью аварий установок, трубопроводов и сооружений.  [c.184]

В начале в раствор переходят одновременно цинк и медь в пропорции, соответствующей составу сплава. Ионы меди затем вторично выделяются из раствора, а образовавшийся осадок меди ускоряет электрохимическую коррозию латуни, как добавочный катод. В результате в раствор переходят ионы цинка, и с течением времени обесцинкование распространяется так глубоко, что приводит к образованию сквозных поврежде1шй латуни. Для уменьшения обесцннкования латуней сплав дополнительно легируют небольшими количествами олова, никеля, алюминия, а чаще всего мышьяка, порядка 0,001—0,012%. Возможный механизм влияния мышьяка — увеличение перенапряжения вторичного выделения меди.  [c.253]

В морской и пресной водах коррозионная стойкость зависит от присутствия, на поверхности металла оксидных пленок, через которые должен диффундировать кислород, чтобы могла продолжаться коррозия. Установлено, что в дистиллированной воде при комнатной температуре на меди образуется оксидная пленка, состоящая из смеси Си О и СиО [3, 4 ]. Освещение видимым светом заметно замедляет скорость образования оксидов [3]. Пленка легко разрушается быстро движущейся водой, а также растворяется угольной и органическими кислотами, которые присутствуют в некоторых пресных водах или грунтах. В результате скорость коррозии заметно возрастает. Например, в Мичигане при смягчении горячей воды цеолитами с образованием значительных количеств NaH Oj сквозная коррозия медных водяных труб наблюдалась через 6—30 месяцев эксплуатации [5]. Та же самая, но несмягченная вода почти не проявляла коррозионной  [c.327]

ОБЕСЦИНКОВАНИЕ. Определение процесса обесцинкования было дано в разд. 2.4. На латунях это явление может носить локальный характер (пробковидные разрушения) (рис. 19.3) или протекать равномерно по всей поверхности (коррозионное расслаивание) (рис. 19.4). Латунь, подверженная коррозионному расслаиванию, сохраняет некоторую прочность, но не обладает пластичностью. Обесцинкование водопровода, сопровождающееся расслаиванием, может при резком подъеме давления привести к разрыву трубы при пробковидном обесцинковании пробка прокорродировавшего сплава может быть выбита с образованием сквозного отверстия. Поверхность обесцинкованных участков пористая, поэтому наружная поверхность пробок может быть покрыта продуктами коррозии и твердыми отложениями, образовавшимися при испарении воды.  [c.332]

СТО сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концетраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу. Особенностью разрушений при коррозионно-механическом воздействии является наличие на изломах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др.  [c.120]

Сквозная язвенная коррозия имела место в сварном соединении метанолопровода скважины № 633 после 20 лет эксплуатации (транспортировка ингибитора КИГИК при 18 МПа). Инициировали коррозию дефекты сварного шва (поры и несплавления). Поры, подрезы и непровар корня шва привели к нарушению герметичности метанолопровода скважины № 288 после 16 лет эксплуатации (рис. 7в), а метанолопровода скважины № 788 — после 15 лет.  [c.29]

Недопустимые дефекты металла при проведении сварки — непровар корня шва и крупные поры — через 20 лет эксплуатации привели к сквозной язвенной коррозии сварного соединения патрубка линии сброса водно-метанольной смеси (ВМС) из аппарата С-203 УКПГ-7 (рис. 9). После 23 лет эксплуатации сквозная язвенная коррозия наблюдалась также в области основного металла дренажного патрубка 1" сепаратора С-403-2 УКПГ-2, изготовленного из стали 20 и имеющего твердость 140 НВ.  [c.35]

Сквозная язвенная коррозия установлена в металле сварного шва змеевика 033,4x4,5 мм подогрева диэтиленгликоля (ДЭГ) С-203 после 18 лет эксплуатации (рис. И). Материалом трубы служила сталь TTS135N (аналогичная стали 20), имеющая твердость 110 НВ. В зоне сквозного поражения обнаружены дефекты сварки — непровары, поры, а также участки металла с видманштеттовой структурой (твердость — 185 НВ).  [c.35]


Низкотемпературные поверхности нагрева котельных агрегатов в процессе эксплуатации подвергаются так называемой низкотемпературной коррозии, т. е. разъеданию металла в результате химического или электрохимического взаимодействия его с окружающей средой. В основном от низкотемпературной коррозии страдают воздухоподогре ватели. Она приводит к сквозному проеданию труб, в результате чего возникает перетекание воздуха в газовую сторону воздухоподогревателя, сопровождающееся повышением количества дымовых газов, перегрузкой дымососов и ограничением производительности котельных агрегатов из-за недостатка тяги и дутья. Коррозия протекает тем быстрее, чем выше в топливе содержание серы, так как часть серы в топке сгорает в SO3, который, соединяясь в газоходах котла с Н2О, содержащейся в дымовых газах, образует серную кислоту HsS04, которая, оседая на трубах поверхностей нагрева, разъедает их.  [c.310]

При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингооб-разования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования.  [c.38]

Язвенная коррозия более опасна, чем равномерная, так как ее очень трудно обнаружить из-за небольших размеров язв и их заполнения коррозионными продуктами. В результате язвенной коррозии наблюдаются сквозные проржавления стенок трубопроводов, резервуаров и емкостей уже на третьем году их эксплуатации, и практически все это обнаруживается в момент аварии. Скорость таких разрушений, как показывает практика, в основном зависит от среды, в которой эксплуатируется сооружение, качества изоляционного покрытия и вида транспортируемого продукта. Поэтому при выборе трассы трубопроводов и места под строительство нефтебазы или компрессорной станции проводят комплекс геологогеофизических изысканий с целью удаления от коррозионно-опасных зон и источников блуждающих токов. Температура грунта также способствует изменению скорости коррозии, которая увеличивается при повышении температуры и уменьшается при понижении. При прокладке трубопроводов в мерзлых грунтах этот фактор приобретает большое значение, так как скорость коррозии сильно увеличивается при оттаивании грунта.  [c.6]

Подземные детали, изготовленные из нелегпрованных черных металлов, могут быть поражены равномерной сплошной коррозией, а также язвенной и сквозной. Вид коррозии зависит от свойств грунта, но в первую очередь от протяженности и свойств подземного сооружения у сооружений малой площади или не имеющих пассивной защиты обычно преобладает равномерная сплошная коррозия, тогда как у сооружений большой площади или имеющих пассивную защиту, например у трубопроводов, следует ожидать преимущественно местную коррозию. Для оценки коррозионной опасности решающим фактором является рассмотрение функционального назначения сооружения (см. раздел 2.1). Так, для трубопроводов и резервуаров коррозионное разъедание (местная коррозия) представляет существенную опасность ввиду возможного прорыва стенки, тогда как равномерная сплошная коррозия практически не имеет значения. Напротив, у подземных транспортных сооружений, например у транспортных туннелей, равномерная сплошная коррозия может снизить несущую способность. Местная коррозия при этом представляет второстепенный интерес.  [c.137]

В последнее время танки во многих случаях тоже покрывают слоем высококачественной краски, стойкой по отношению к нефти и к морской воде, что может уменьшить необходамое число протекторов или увеличить протяженность зоны защиты. Однако при этом следует учитывать, что при загрузке в танки некоторых химикатов может быть вызван неожиданный сильный износ покрытия, и тогда из-за недостаточности защиты возникает опасность язвенной (сквозной) коррозии на местах повреждения покрытия (см. раздел 4.2). В этом отношении даже слой эпоксидной смолы толщиной до 300 мкм недостаточно надежен. Праймеры (грунтовка) и одинарные верхние слои краски обеспечивают лишь временную защиту. Защищенные таким способом поверхности следует рассматривать как не имеющие защиты.  [c.369]

Для защиты резервуаров-хранилищ с сырой нефтью, которые подвергаются опасности коррозии при попадании соленых вод на месторождении, применяют алюминиевые протекторы. На рис. 20.2 показан пример распределения протекторов в донной части такого резервуара [4]. Без катодной защиты имеется опасность сквозной коррозии около пор в покрытии в результате образования коррозионного элемента (см. раздел 4.2). Для защиты донной области до высоты в 1 м и зоны с чередующимся воздействием воды и нефти при площади их поверхности 2120 (куда входят и встраиваемые элементы, в частности опорные лапы для плавающей крыши и новерхиостн нефтяной мешалки) и ориентировочной расчетной плотности защитного тока 8 мА м требуется суммарный ток 17 А.  [c.380]

В противоположность катодной защите при анодной защите обычно имеются только узко ограниченные области защитных потенциалов, в которых возможна защита от корозии. По этой причине при анодной защите нужно в общем случае применять защитные установки с регулированием потенциала. Область защитных потенциалов может быть сильно сужена особыми процессами коррозии, например язвенной (сквозной) коррозией коррозионностойких сталей под влиянием хлоридов. В таком случае анодная защита иногда практически уже не может быть применена. Склонность к местной коррозии, обусловленная свойствами материала, тоже может сделать анодную защиту неэффективной. Сюда относится, например, склонность к межкристаллитной коррозии у коррозионностойких высокохромистых сталей и сплавов на основе никеля.  [c.390]

Как стимуляторы коррозии, так и растягивающие напряжения, действующие при коррозионном растрескивании под напряжением, сужают диапазон защиты и могут даже сделать электрохимическую защиту вообще невозможной (см. разделы 2.3 и 2.4) напротив, ингибиторы расширяют диапазон защитных напряжений или впервые создают возможность его появления. Характерным примером могут быть коррозионно-стойкие стали, у которых ионы хлора вызывают сквознуЮ (язвенную) коррозию, а сульфат-ионы и нитрат-ионы действуют как ингибиторы. При этом критические потенциалы ощутимо сдвигаются или как в случае нитрат-ионов вообще появляются впервые (см. рис. 2.15). При этом язвенная коррозия ограничивается вторым потенциалом язвенной коррозии в сторону более положительных потенциалов. Такой критический предельный потенциал называется также потенциалом ингибирования и может быть использован для анодной защиты [40]. Ионы перхлорной кислоты тоже могут действовать как ингибиторы язвенной коррозии [41].  [c.398]


Анодные ингибиторы могут в случае пассивируемых систем облегчить пассивирование, поскольку они в значительной степени покрывают поверхность металла и тем самым снижают плотность тока пассивации. В случае непассивируемых систем защита обеспечивается только при полном покрытии поверхности. При неполном ингибировании остается опасность язвенной (сквозной) коррозии. Ингибирующее дей-  [c.399]


Смотреть страницы где упоминается термин Коррозия сквозная : [c.67]    [c.146]    [c.15]    [c.161]    [c.149]    [c.331]    [c.55]    [c.17]    [c.207]    [c.54]    [c.37]    [c.43]    [c.52]    [c.143]    [c.145]   
Водоподготовка Издание 2 (1973) -- [ c.34 ]



ПОИСК



Мероприятия, предупреждающие сквозную коррозию

Механизм сквозной коррозии. Действие пассивирующей среды

Определение условий, приводящих к сквозной коррозии

Сквозная коррозия и коррозионное растрескивание

Ток сквозной



© 2025 Mash-xxl.info Реклама на сайте