Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение раствор твердый

Взаимодействие твердого тела с жидкостью может привести к растворению, разрушению твердого тела. Характер разрушения, растворения твердого тела определяется его внутренним строением. На это впервые обратил внимание М. В. Ломоносов. Он показал, что Крепкие водки (кислоты), растворяя в себе металлы, без прикосновения внешнего огня согреваются, кипят и опаляющий пар испускают , а при растворении солей происходит поглощение тепла и не выделяется газ.  [c.13]


З.КОНКУРЕНЦИЯ ПРИМЕСЕЙ ПРИ АДСОРБЦИИ НА ГРАНИЦАХ ЗЕРЕН И МЕЖЗЕРЕННОЕ РАЗРУШЕНИЕ В ТВЕРДЫХ РАСТВОРАХ Ре - Р - С  [c.121]

Если в расчете диффузионный слой считать не твердым раствором, а интерметаллидом, то критическая скорость будет еще меньше. Согласно подсчетам, износ от разрушения поверхности твердого сплава не соответствует режимам резания, применяемым на практике. Приведенные подсчеты очень грубы, потому что не известна точно температурная зависимость коэффициента диффузии углерода в карбиде вольфрама и температурная зависимость коэффициента диффузии вольфрама в железо. Тем не менее полученные качественные зависимости подтверждаются опытом. Так, при очень низких скоростях резания (V = 0,02 0,5 м/мин) в интервале 1000 — 1200° износ, наряду с диффузионным растворением, протекает с разрушением поверхности, в то время как при обычных скоростях резания этого не наблюдается.  [c.293]

Перед началом испытания установленный в камеру образец (диаметром 2 мм) заливали охлаждающей смесью (жидкий азот, раствор твердой углекислоты в спирте или ацетоне) и выдерживали некоторое время. Затем включали электродвигатель и при помощи накидной гайки устанавливали требуемую нагрузку. Число циклов до разрушения определяли по числу оборотов двигателя и времени испытания по секундомеру.  [c.17]

Коррозионная стойкость хромистых сталей зависит также от режимов термической их обработки. Наиболее распространенным видом термической обработки, обеспечивающим высокую сопротивляемость коррозии хромистых сталей, содержащих хром в количестве около 13%, является закалка с отпуском. При нагреве сталей рассматриваемого типа до высоких температур (950—1000°С) достигаются условия, при которых карбиды хрома переходят в твердый раствор. Если фиксировать это состояние быстрым охлаждением (в масле или на воздухе), то углерод удерживается в твердом растворе. Следующий за процессом закалки отпуск при низкой температуре лишь снимает напряжения закалочного происхождения, незначительно изменяя основную структуру, и таким образом общая сопротивляемость стали коррозионным разрушениям сохраняется.  [c.216]

Появление хрупкого разрушения наблюдается у металлов и сплавов с о. ц. к. решеткой и проявляется особенно заметно в присутствии примесей, образующих твердые растворы внедрения. Со-держание всего нескольких атомов углерода в а-железе на один миллион атомов железа обусловливает переход от вязкого состояния в хрупкое. Снижение зонной очисткой содержания углерода приводит к существенному увеличению пластичности железа (поперечное сужение до 90%) даже при температурах, лежащих вблизи 4,2 К.  [c.430]


Ошибочность предположения о меньшей прочности границ зерен при высоких температурах доказана экспериментально образцы из заводского слитка латуни Л68, разорванные при температуре горячей прокатки (830 С), деформировались пластично по телу зерен при 100%-ном сужении (рис. 9). При наличии в сб-латуни 0,05 % свинца наблюдалось межкристаллитное разрушение. Если легирующий элемент находится в твердом растворе, то сплав ведет себя как чистый металл. Если при легировании образуется межкристаллитная эвтектика, это приводит к хрупкости.  [c.25]

Распространено мнение, что хладноломкость железа — это проявление истинной физической хрупкости железа, обусловленной особым кристаллографическим характером разрушения, типом решетки, ее параметром примеси могут лишь изменять температуру хладноломкости (кислород—в сторону повышения) (марганец, углерод — в сторону понижения). Синеломкость (350—450 °С) обусловлена выпадением из твердого раствора каких-либо компонентов, например оксидов, карбидов, нитридов. Красноломкость наблюдается только у загрязненных серой и кислородом металлов [1]. Действительно, при высоком содержании этих примесей железо № 1 и 4 (табл. 64) обладает пониженной  [c.146]

В более ранних исследованиях [1—3] было показано, что плазменное покрытие оказывает на процессы деформирования и разрушения твердых тел двойственное влияние в одном интервале температур и напряжений оно упрочняет основной материал, в другом — разупрочняет. Аналогичное воздействие, но с противоположным эффектом на основной материал оказывает диффузионный слой, образованный при дополнительной пос.ле напыления термообработке. Такое воздействие покрытия на твердое тело обусловлено динамикой дислокаций у поверхности раздела. Взаимодействие дислокаций с границей раздела определяется свойствами а) напыленного покрытия, изобилующего порами, примесями, окислами, в котором при приложении напряжений могут преждевременно зарождаться трещины, приводящие к разрушению композиций б) контактной зоны, формирующейся непосредственно при напылении покрытий и представляющей собой тонкий слой на поверхности основы в) диффузионного слоя, образовавшегося при отжиге и представляющего собой твердый раствор напыляемого материала в основе.  [c.104]

Использование предложенной методики позволяет вычислять остаточные напряжения, не прибегая к разрушению образца. Уравнение (10.4) дает возможность определять величину макронапряжений при образовании твердого раствора, не обращаясь к эталонному (табличному) значению параметра решетки материала покрытия, найти который обычно довольно сложно.  [c.189]

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Степень анизотропии свойств зависит не только от вида текстуры, но и от легированности твердого раствора. Авторы работ [ 88] на сплавах систем Т1 —А1 —Мп и Т(—А1 —Мо установили, что изменение легированности твердого раствора может влиять не только на величину анизотропии, но и на ее вид (переход от обратной к прямой анизотропии). Например, величина КСТ поперечных образцов из проката сплава с содержанием 2,3 % Мп при увеличении содержания алюминия от 1 до 8 % уменьшается с 1280 до 29 кДж/м , т.е. в 40 раз при практически неизменной величине работы разрушения продольных образцов. Аналогичная картина наблюдается и на сплавах Т1—А1 —Мо (рис. 85 и 86). Из приведенных данных видно, что в сплавах с б —  [c.129]


Результаты испытаиий этих образцов приведены на рис. 32. С увеличением продолжительности предварительного отжига при 811 К поперечная прочность незначительно уменьшается после обработки О , а после обработки Т-б — максимальна при средних продолжительностях отжига. Исследование излома этих образцов показало, что основным типом разрушения является разрушение матрицы (в чистом виде или в сочетании с расщеплением волокон). Иногда матрица разрушалась путем отслаивания материала, нанесенного плазменным напылением, от фольги-подложки значит, из-за несовершенства связи прочность алюминия, занесенного путем плазменного напыления, может быть меньше прочности алюминиевой фольги. Меньшую роль играло разрушение по поверхности раздела между долей этого типа разрушения и продолжительностью предварительного отжига нет прямой связи. В случае обработки Т-6 низкие значения прочности при малых продолжительностях предварительного отжига, вероятно, обусловлены неполным переходом матрицы в твердый раствор, а при большей продолжительности отжига (160 ч)—тем, что усиливается расщепление волокон (причина этого явления пока неизвестна). Поперечная прочность данной серии образцов, как правило, не зависела от термической обработки, приводящей к изменению состояния поверхности раздела, так как расщепление волоков или разрушение матрицы происходило до того, как на-  [c.224]

Выше отмечалось, что для перлитных и аустенитных сталей в критерии прочности типа (4.13) у4о=0,5, а для никелевых сплавов /4=0,9. Это говорит о том, что в обследованных партиях металла сталей эффект влияния внутренних напряжений и локальных пластических деформаций в микрообъемах металла в равной степени отражается на влиянии на разрушение при ползучести 71 и (Т,. Никелевые сплавы представляют более сложный объект. Например, в [75] показано, что легирующие элементы (алюминий и титан) влияют на степень концентрации напряжений на границе раздела фаз из-за различия параметров решетки твердого раствора и вторичной фазы.  [c.156]

В агрессивных средах разрушение поверхности твердого тела происходит иод влиянием двух одновременно протекающих процессов -коррозии (в результате химического и электрохимического взаимодействия материала со средой) и механического изнашивания. Химическое взаимодействие реализуется при контакте материалов с сухими газами или неэлектропроводными агрессивными жидкостями электрохимическая коррозия - при контакте металлов с электролитами (водные растворы кислот, щелочей, солей и т.д.). При этом наблюдаются два процесса - анодный (непосредственный переход атомов металла в раствор в виде ионов) и катодный (ассимиляция избыточных электронов атомами или ионами раствора). В результате в зоне трения возникает элек1рический ток.  [c.137]

При анализе возможных причин перехода сплавов железа, клoкньtx к отпускной хрупкости, от транс- к интеркристаллитному разрушению с ростом размера зерна авторы [173] отмечают, что хотя с ростом зерна инициирование трещин на границах зерен двойникованием становится более вероятным, чем инициирование в зерне скольжением, само по себе зарождение микротрещин на границах зерен, атакованных двойниками, недостаточно для объяснения обсуждаемого эффекта. Дело в том, что соотношение транс- и интеркристаллитных участков роста магистральной трещины должно определяться соотношением значений вязкости разрушения пр телу и границе зерна [177], а от места зарождения исходной микротрещины зависеть не должно. Однако микроскопические наблюдения [173] позволяют предполагать, что межзеренное разрушение в твердых растворах Ре — Р происходит не вследствие роста единичной магистральной трещины, а в результате слияния системы микротрещин докритического размера, образованных независимо в местах встречи двойников с границами зерен. Возможно, что существенную роль в зарождении и объединении таких микротрещин играет аккомодационное зернограничное проскальзывание, стимулированное переходом двойника через границы зерен [173]. Понятно, что при таком механизме разрушения преимущественное зарождение микротрещин на границах зерен крупнозернистых образцов приводит к преимущественно межзеренному излому.  [c.142]

В работах П. А. Ребиндера и его школы было установлено, что нри деформации и механическом разрушении (диспергировании) твердых тел в поверхностно-активной среде всегда раскрывается значительно большее число поверхностных дефектов на единицу поверхности или объема тела, чем в инактивной среде — на воздухе или в вакууме. Это объясняется тем, что под влиянием адсорбции бо,пьшее число зародышевых микрощелей становится функционирующим (активным). Именно поэтому, при тех же механических условиях частицы тела, являющиеся продуктом его разрушения в поверхностно-активных средах, всегда значительно мельче (при бурении, помоле). Это имеет большое практическое значение, обеспечивая возможность тонкого (коллоидного) диспергирования твердых тел в поверхностно-активных средах и позволяя при бурении глубоких скважин образовать дисперсную фазу промывочного раствора за счет тонких фракций выбуренных частиц, как было показано К. Ф. Жи-гачелг и Л. А. Шрейнером в их работах по понизителям твердости в бурении.  [c.26]

Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]


Склонность к межкристаллитной коррозии чаще всего возникает при распаде некоторых твердых растворов в определенных условиях. Так, например, высокохромистые стали приобретают склонность к межкристаллитной коррозии после пх быстрого охлаждения от температур, превышающих 900° С подверженность латуни к межкристаллитному разрушению зависит от природы и структуры сплава, а также характера агрессивной среды свинец даже высокой чистоты имеет склонность к межкристал-лнтпон коррозии вследствие роста зерна медноалюмшшевые сплавы приобретают склонность к межкристаллитной коррозии вследствие выделения при искусственном старении интерметаллических соединений и др.  [c.163]

Высокая чувствительность к вредному влиянию водорода. Расплавленная медь хорощо растворяет водород и при наличии в ней закиси меди СпаО подвержена водородной болезни . Сущность водородной болезни состоит в том, что водород, легко проникающий в расплавленную медь, реагирует с кислородом закиси меди с образованием водяных паров по реакции СпаО -Ь На ->-Си -f Н О. Водяные пары в данных условиях создают в затвердевшем металле больщое давление и вызывают появление волосяных трещин, которые могут привести к разрушению изделия. Кроме того, водород вызывает пористость сварных соединений в связи с различной растворимостью в расплавленной и твердой меди и образованием водяных паров.  [c.136]

В концентрационных элементах два одинаковых электрода контактируют с растворами разных составов. Существуют два типа концентрационных элементов. Первый называется солевым концентрационным элементом. Например, если один медный электрод погружен в концентрированный раствор сульфата меди, а другой — в разбавленный (рис. 2.3), то при замыкании такого элемента медь будет растворяться с электрода, находящегося в разбавленном растворе (анод) и осаждаться на другом электроде (катоде). Обе реакции ведут к выравниванию концентрации растворов. Другой тип концентрационного элемента, имеющий большое практическое значение, — элемент дифференциальной аэрации. Примером может служить элемент из двух железных электродов, погруженных в разбавленный раствор Na l, причем у одного электрода (катода) электролит интенсивно насыщается воздухом, а у другого (анода) — деаэрируется азотом. Различие в концентрации кислорода сопровождается возникновением разности потенциалов, что обусловливает протекание тока (рис. 2.4). Возникновение элемента этого вида вызывает разрушения в щелях (щелевая коррозия), образующихся на стыках труб или в резьбовых соединениях, поскольку концентрация кислорода в щелях ниже, чем снаружи. Этим также объясняется язвенное разрушение под слоем ржавчины (рис. 2.5) или коррозия на границе раздела раствор—.воздух (рис. 2.6). Доступ кислорода к участкам металла, покрытым ржавчиной или другими твердыми продуктами коррозии, затруднен по сравнению с участками, покрытыми тонкими пленками или свободными от них.  [c.25]

ИНГИБИТОРЫ. СООТНОШЕНИЕ СУЛЬФАТА И ЩЕЛОЧИ. Ингибирующее действие таннинов, которые при высоких температурах предотвращают КРН в котлах, нельзя объяснить конкурентной адсорбцией с 0Н . Подобные процессы невозможны ввиду слабой связи органических молекул с поверхностью металла. Высказывалось предположение, что таннины связывают растворенный кислород. Однако такое действие не должно было бы обязательно приводить к предупреждению КРН, так как нет твердых доказательств отсутствия разрушений этого типа в растворах NaOH, свободных от растворенного кислорода. Можно предположить, что в результате взаимодействия таннинов с NaOH образуются соединения, которые обладают буферными свойствами и действуют аналогично иону Р0 . Они могут также отчасти экранировать дефекты поверхности в зоне сварного шва, в которых в противном случае может задерживаться котловая вода и pH ее со временем повышается. Помимо этого, при применении таннинов вещества, образующие накипь, преимущественно возникают в толще котловой воды, а не на поверхности котла. Этим предупреждается образование узких зазоров на границе со слоем накипи.  [c.291]

Выбор высокопрочных алюминиевых сплавов весьма велик (некоторые из них приведены в табл. 20.1). Соотношение компонентов и режим термической обработки этих сплавов обычно выбирают с таким расчетом, чтобы склонность к КРН была минимальной. Термическая обработка с образованием твердого раствора влияет на склонность к коррозионному растрескиваткию, так как изменяет состав сплава в области границ зерен и микроструктуру сплава [33]. В некоторых случаях эксплуатационные температуры, особенно превышающие комнатные значения, могут приводить к искусственному старению сплава. При этом склонность к растрескиванию может увеличиться, и в присутствии влаги или хлорида натрия произойдет преждевременное разрушение металла. Любой из описанных выше сплавов проявляет наибольшую склонность к растрескиванию в тех случаях, когда растягивающее напряжение действует по нормали к направлению прокатки. По-видимому, в этом случае в процессе участвует большая часть граничных поверхностей удлиненных зерен, вдоль которых распространяются трещины.  [c.354]

Существеным при этом является температура плавления избь[-точной фазы. Она должна быть более высокой, чем пгемпература плавления основного твердого раствора. Разрушение скелета или сетки избыточной фазы при горячей обработке давлением, а также образование изолированных частиц этой фазы приводит к понижению жаропрочности литых сплавов. Из рассмотренного следует, что создание жаропрочных материалов сводится к тому, чтобы тем или иным путем уменьшить величину и скорость разупрочнения сталей и сплавов при повышении температуры. Это достигается путем комплексного легирования сплавов тугоплавкими металлами с получением отливок с заданной кристаллической структурой.  [c.48]

В начале 50-х годов были созданы пьезоэлектрические материалы, представляющие собой поликрпсталлический твердый раствор монокристаллов, вектор поляризации которых ориентирован сильным внешним электрическим полем. Открытие ньезокерамн-ческих материалов, обладающих рядом преимуществ по сравнению с традиционными монокристаллами, значительно повысило интерес к исследованиям прочности и разрушения пьезоэлектрических материалов с использованием методов механики сплошной среды, электродинамики и кристаллофизики.  [c.70]

Анализ зависимости поляризуемости цинковьгх покрытий от содержания в них железа показывает влияние структурных составляющих сплавов. В однофазной области твердого раствора процесс коррозионного разрушения контролируется скоростями анодной и катодной реакций, и скорость коррозии составляет 0,05 г/(м ч). Наибольшая коррозионная стойкость приходится на область диаграммы железо — цинк, содержащей 8-17 % цинка, что связано, по-видимому, с появлением Г-фазы, являющейся химическим соединением на базе твердого раствора, стехиометрический состав которого соответствует формуле FesZnio- Наличие химического соединения вызьшает увеличение перенапряжения катодного процесса более значительное, чем для чистого цинка. Скорость коррозии сплава при содержании 8,5 % цинка составляет 0,02 г/ (м ч), а при 17,3 % - 0,01 г/ (м ч). Дальнейшее увеличение  [c.55]


Микроструктура сплава АН-2,5 [14], [15], [16]. Сплав состоит из а-твердого раствора и эвтектики а-твердый раствор + химическое соединение NiAb. Сплав. АН-2,5 не показывает коррозионного разрушения при работе в среде масел.  [c.113]

Попытка найти универсальное объяснение низкотемпературного разрушения интерметаллидов была предпринята Уэстбруком и Вудом [7], которые разработали метод изучения сегрегации растворенных примесей на границах зерен с помощью измерения микротвердости, подробно описанный в [8, 9]. Было установлено, что сегрегирующими примесями являлись кислород или азот, которые либо присутствовали в исходных образцах, либо абсорбировались во время термообработки. Уэстбрук и Вуд считают, что концентрация растворенных газовых примесей на границах зерен приводит к их заметному упрочнению, наиболее вероятным механизмом которого является образование твердых растворов [9]. Это, по мнению авторов [7, 8, 9], доказывается межкристаллит-ным разрушением образцов соединений и резким повышением  [c.290]

Другой механизм, при котором возможно коррозионное растрескивание, заключается в образовании и развитии разрушения только за счет механических факторов. При этом предполагается [57], что коррозионная среда содержит ионы или компоненты, которые могут или диффундировать в металл, образуя хрупкую фазу (например, гидрид) в вершине трещины, или сегрегировать в районы, непосредственно прилегающие к трещине, способствуя зарождению новой трещины. В качестве специфического элемента обычно рассматривают водород, скорость диффузии которого может быть сопоставима со скоростью развития трещины. При этом многие исследователи [ 58 и др.] указывают на возможность образования гидридов, обладающих низкой пластичностью и вязкостью и затрудняющих пластическую деформацию металла перед вершиной трещины. По мнению В. А. Маричева и И. Л. Розенфельда [59, с. 5—9], следует учитывать эти возможности понижения когезивной прочности титановых сплавов под действием достаточно высокой концентрации водорода в твердом растворе.  [c.58]

Как было показано выше, появление в структуре сплава фаз или сегрегаций легирующих элементов (или примесных атомов), обладающих более отрицательным потенциалом, чем матрица, приводит после нарушения пассивности к созданию более отрицательного компромиссного потенциала и усилению анодного тока. Скорость репассивации активной поверхности замедляется. Пример этого—сплав ВТ5-1, состаренный при 500°С в течение 10—100 ч. Вязкость разрушения в коррозионной среде этого сплава в состаренном состоянии 40,3 — 46,5 МПа /м. Излом темноюерый— характерный для коррозионного растрескивания. Однако достаточно этот же сплав подвергнуть закалке с 900—1000°С, обеспечивающей скорость охлаждения в интервале 400—600°С более 50 град/мин, как сплав становится нечувствительным к коррозионному растрескиванию. Величина вязкости разрушения поднимается до 93 — 108,5 МПа y/lA. Излом образцов становится светлым, как у металла, нечувствительного к коррозионному растрескиванию. В этом случае за счет устранения в структуре сегрегатов или упорядоченного а-твердого раствора (по алюминию) снижается величина анодного тока, уменьшается анодное растворение, создаются более благоприятные условия для репассивации поверхности после нарушения защитной пленки, в результате чего уменьшается возможность проникновения и диффузии водорода.  [c.71]

Изучение возможности возникновения разрушения при контакте окисленных титановых сплавов с твердыми солями галогенов при 20°С. Для этого были использованы образцы сплава ВТ5-1 в двух структурных состояниях а-твердый раствор и а-твердый раствор с предвыделениями й2ч()азы. Для создания таких структурных состояний при одинаковых поверхностных оксидных пленках в первом случае образцы выдерживали в течение 10 ч при 600°С, после чего закаливали с 750°С (выдержка составляла 10 мин). Во втором случае образцы вначале закаливали с 750°С, а затем подвергали старению при 600°С, 10 ч. В результате установлено, что при нагружении образцов сечением 3X10 мм трехточечным изгибом в 3 %-ном растворе ЫаС1 в первом случае происходил надрыв поверхностных оксидных слоев с последующей глубокой пла-74  [c.74]

Для изучения возможности появления разрушения в контакте с твердыми солями Na I были проведены следующие исследования поверхность образцов в указанных выше двух структурных состояниях смачивали насыщенным водным раствором Na I, после чего образцы высушивали при 40°С в течение 20 ч. Сухие образцы испытывали на воздухе трехточечным изгибом с записью нагрузки. Исследования, выполненные В. А. Шером, показали, что закаленные образцы, как и при испытании в водном растворе Na I, после появления надрывов в оксидном слое изгибались без разрушения. Образцы второй партии, имевшие структуру ач ]азы с предвыделениями Оа-фазы, разрушались хрупко, без заметных следов пластической деформации. Исследование излома показало, что его цвет такой же темный, как и у образцов, испытанных в водном растворе. В изломе наблюдаются ручьевой узор и многочисленные сколы.  [c.75]

Штриховое травление с ориентированным осаждением Для сплавов, содержащих медь, Кострон [49] неоднократно применял этот металлографический способ работы с реактивом Ке-перника 50. Для сплавов с содержанием меди более 1 % продолжительность травления при температуре 50° С составляет 1 мин. Одной из причин разрушения при высушивании пленки, содержащей осадок меди, является ориентация кристаллов. Грань куба (100) темная и не имеет штрихов плоскость октаэдра (1И) имеет сетчатую штриховку без преимущественной ориентации. На плоскости додекаэдра (110) появляются параллельные штрихи. Расстояние между штрихами определяет положение вышеуказанных кристаллографических плоскостей. С их помощью можно установить принадлежность ячейки дендрита твердого раствора в литейном сплаве, текстуру и влияние рекристаллизации. Способность к образованию штриховых фигур зависит от толщины осадка. При существующей ликвации вследствие различной толщины пленки центр твердого раствора может не иметь штриховых фигур, а по периферии твердого раствора приобретать их.  [c.277]

Как правило, прочность при поперечном растял<ении уменьшается с увеличением продолжительности предварительного отжига при 811 К, а дефо рмация разрушения обнаруживает тенденцию к некоторому росту. Прочность первого образца в табл. 2 (неотож-женного) низка, поскольку матрица не переведена в состояние твердого раствора. Во всех образцах имеет место разрушение смешанного типа. Значит, прочность поверхности раздела и сопротивление волокна расщеплению меняются в широких пределах, что, возможно, отчасти обусловлено постепенным разрушением окисной пленки между волокнами и матрицей. Хотя такая  [c.218]

Из кинетической концепции процесса разрушения [57] следует, что в основе разрушения лежат последовательные элементарные акты распада межатомных связей. Для сложнолегированных гетерогенных жаропрочных сплавов трудно (если вообще возможно) оценить межатомные силы связи твердого раствора, на которые влияют легирующие элементы и степень легирования. Нельзя также не учитывать возможного влияния на закономерности зарождения и развития повреждений диффузных процессов, особенностей дислокационной структуры и других факторов. В этих условиях оценка параметров уравнений долговечности должна базироваться на методах, позволяющих отразить все особенности развития процесса деформирования и разрушения в пределах анализируемой температурно-силовой области службы металла в интегральной форме.  [c.69]


Смотреть страницы где упоминается термин Разрушение раствор твердый : [c.113]    [c.411]    [c.489]    [c.170]    [c.131]    [c.336]    [c.152]    [c.418]    [c.81]    [c.105]    [c.8]    [c.17]    [c.67]    [c.616]    [c.95]   
Материаловедение Учебник для высших технических учебных заведений (1990) -- [ c.0 ]



ПОИСК



К Маршаков Электрохимическое поведение и характер разрушения твердых растворов и интерметаллических соединений

Конкуренция примесей при адсорбции на границах зерен и межзеренное разрушение в твердых растворах

Раствор твердый



© 2025 Mash-xxl.info Реклама на сайте